Fecha de actualización: 08/03/2024

INSTITUTO DE ESTUDIOS DE POSGRADO

MÁSTER UNIVERSITARIO EN ELECTROQUÍMICA. CIENCIA Y TECNOLOGÍA.

CURSO 2024/25

APLICACIONES BIOLÓGICAS DE LA ELECTROQUÍMICA

Datos de la asignatura

Denominación: APLICACIONES BIOLÓGICAS DE LA ELECTROQUÍMICA

Código: 637010

Plan de estudios: MÁSTER UŅIVERSITARIO EN ELECTROQUÍMICA. CIENCIA Y Curso: 1

TECNOLOGÍA.

Créditos ECTS: 3.0 Horas de trabajo presencial: 23
Porcentaje de presencialidad: 30.0% Horas de trabajo no presencial: 52

Plataforma virtual: https:/cvnet.cpd.ua.es/moodleua/

Profesor coordinador

Nombre: MADUEÑO JIMÉNEZ, RAFAEL

Departamento: QUÍMICA FÍSICA Y TERMODINÁMICA APLICADA **Ubicación del despacho:** Edificio Marie Curie, 2ª planta (C32S130)

E-Mail: rafael.madueno@uco.es Teléfono: 957218646

Breve descripción de los contenidos

Se abordará la metodología teórica y experimental para el diseño, caracterización y utilización de (bio)sensores electroquímicos, de interfaces funcionalizadas con monocapas autoensambladas, interfases biomiméticas electrificadas modificadas con películas lipídicas y con proteínas, así como el estudio de la transferencia electrónica en estos sistemas y su caracterización mediantes técnicas de superficie, microscopías de sonda de barrido y electroquímicas.

Conocimientos previos necesarios

Requisitos previos establecidos en el plan de estudios

Ninguno

Recomendaciones

Ninguna especificada

Programa de la asignatura

1. Contenidos teóricos

1.- Fundamentos de los biosensores electroquímicos.

Tipos. Introducción. Substratos. Elementos de reconocimiento. Transducción electroquímica: Biosensores de 1ª, 2ª y 3ª generación. Biosensores enzimáticos. Biosensores de afinidad.

2.- Construcción y aplicaciones de los biosensores electroquímicos.

Tipos de electrodos. Electrodos serigrafiados: preparación y modificación. Aplicaciones de los biosensores en el campo bioalimentario y en el biomédico.

3.- Adsorción de biomoléculas sobre superficies electródicas.

Modificación de superficies. Metodologías de formación: Películas de Gibbs, Langmuir y autoensambladas. Caracterización electroquímica y termodinámica. Post-funcionalización.

4.- Caracterización estructural de biomoléculas adsorbidas sobre electrodos.

Aplicaciones. Organización y estructura de películas adsorbidas. Microscopía túnel y de fuerza atómica "in situ". Aplicaciones y ejemplos en bioelectroquímica y dispositivos electrónicos.

5.- Electroquímica de proteínas inmovilizadas I:

Termodinámica. Inmovilización de proteínas sobre electrodos. Caracterización electroquímica de electrodos proteícos. Termodinámica de la transferencia electrónica de proteínas inmovilizadas. Acoplamiento de la transferencia electrónica con procesos químicos.

6.- Electroquímica de proteínas inmovilizadas II:

Cinética. Marcos teóricos para la descripción de la electrocinética de proteínas. Determinación de los parámetros cinéticos de la transferencia electrónica de proteínas. Bioelectrocatálisis.

7.- Modificación de superficies electródicas con películas lipídicas.

Transferencia de monocapas y bicapas. Bicapas soportadas, ancladas y flotantes. Fusión de vesículas. Aplicaciones.

8.- Caracterización de electrodos modificados con películas lipídicas.

Caracterización electroquímica. Modelo de impedancias. Caracterización estructural. Técnicas de espectroscopía FT-IR de reflexión absorción: SBIFTIRS, ATR-SEIRAS y PM-IRRAS.

2. Contenidos prácticos

Sesiones "on-line": Taller/Seminario/Problemas Prácticos

Bibliografía

A. Bibliografía básica

1. Adsorción molecular en electrodos y caracterización de interfases funcionalizadas Adsorption of Molecules at Metal Electrodes

Jacek Lipkowski

Philip N. Ross

VCH publishers Inc. 1992

ISBN 0-89573-786-8

Physical Electrochemistry 2nd Edition - Fundamentals, Techniques, and Applications

Noam Eliaz

Eliezer Gileadi

Wiley VCH Verlag GmbH & Co 2019

ISBN Print 978-3-527-34139-9

ISBN ePDF 978-3-527-34140-5

Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., 2005. Self-Assembled Monolayers of

Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 105(4), 1103-1169

2. Biosensores Electroquímicos

Wang J. (2006). Electrochemical Sensors. En J. Wang. (Ed.), Analytical electrochemistry (pp. 201-

202). Hoboken,1 United States: Wiley

Karl Fink J. (2013). Electrochemical Sensors. En S. Pilla. (Ed.), Polymeric Sensors and Actuators (pp. 269).

Hoboken, United States: Wiley

[Göpel W., Hesse J., Zemel J. N., (1991). Definitions and Typical Examples. En W. Göpel, K. Schierbaum. (Ed.),

Sensors: Chemical and Biochemical Sensors (pp. 2). Weinheim, Germany: VCH

Eggins B. R., (2003). Sensing Elements. En D. J. Ando (Ed.), Chemical Sensors and Biosensors. Southern Gate,

England: Wiley

Alegret S., del Valle M., Merkoçi A., (2004). Biosensores electroquímicos. Sensores electroquímicos. Barcelona.

España: Universitat Autònoma de Barcelona, Servei de Publicacions

Rafael Comeaux and Pablo Novotny, (2009) Biosensors : properties, materials and applications / Nova Science

Publishers, New York, 978-1-60741-617-3, Salvador.

Mirsky, (2004) Ultrathin electrochemical chemo and biosensors: : technology and performance, Springer-Verlag ,

Berlín, 3-540-21285-X,

Pingarrón J. M., Sánchez P., (2003). Biosensores electroquímicos. Química electroanalítica: Fundamentos y

aplicaciones Madrid, España: Síntesis ISBN: 84-7738-663-3

3. Bioelectrochemistry of Biomembranes and Biomimetic Membranes

Rolando Guidelli,

John Wiley & Sons, Incorporated, 2016.

ISBN: 978-1-119-27841-2

Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications

Philip N Barlett

Wiley 2008

ISBN: 978-0-470-84364-2

Interfacial Electrochemistry

Wolfgang Schmickler, Elizabeth Santos

Springer, 2010

ISBN: 978-3-642-04936-1

B. Bibliografía complementaria

Artículos recomendados recogidos en el material de clase (Presentaciones/Transparencias)

Metodología

Actividades presenciales

Actividad	Total
Actividades de comunicacion oral	4
Actividades de experimentacion práctica	4

Actividad	Total
Actividades de exposición de contenidos elaborados	15
Total horas:	23

Actividades no presenciales

Actividad	Total
Actividades de búsqueda de información	4
Actividades de procesamiento de la información	38
Actividades de resolución de ejercicios y problemas	10
Total horas:	52

Resultados del proceso de aprendizaje

Conocimientos, competencias y habilidades

CO	HOCHH	nentos, competencias y nabilidades
CG	G3	Analizar, sintetizar y desarrollar ideas nuevas y complejas con espíritu crítico en el campo de la Electroquímica
CG	3 5	Saber realizar búsquedas de bibliografía científica con espíritu crítico y saber
		manejar bases de patentes y la legislación relacionada con el ámbito científico
CG	64	Concebir, diseñar y llevar a la práctica un proceso de investigación con rigor
		académico de forma autónoma
CG	G1	Comprender los fundamentos y dominar las metodologías teóricas y
		experimentales de la Electroquímica
СВ	36	Poseer y comprender conocimientos que aporten una base u oportunidad de ser
		originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de
		investigación
СВ	37	Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de
		resolución de problemas en entornos nuevos o poco conocidos dentro de contextos
		más amplios (o multidisciplinares) relacionados con su área de estudio
СВ	88	Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la
		complejidad de formular juicios a partir de una información que, siendo incompleta
		o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas
		vinculadas a la aplicación de sus conocimientos y juicios
СВ	39	Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y
		razones últimas que las sustentan a públicos especializados y no especializados de
		un modo claro y sin ambigüedades
СВ	310	Que los estudiantes posean las habilidades de aprendizaje que les permitan
		continuar estudiando de un modo que habrá de ser en gran medida autodirigido o
		autónomo.
СТ	`1	Saber manejar herramientas informáticas avanzadas de tratamiento y análisis de
		datos y de representación gráfica

CT2	Saber elaborar y defender proyectos e informes
CT3	Ser capaz de analizar documentos científico-técnicos en inglés
CE2	Conocer las variables que afectan el proceso de transferencia electrónica, incluyendo los procesos de transporte de materia desde y hacia el electrodo
CE6	Comprender los aspectos avanzados propios de los sistemas de almacenamiento y conversión de energía
CE12	Dominar los principales métodos de modificación y funcionalización superficial de electrodos y conocer sus principales aplicaciones
CE13	Describir y comprender con detalle los sensores electroquímicos y sus principales aplicaciones
CE14	Comprender el fenómeno de electrocatálisis, su relación con la naturaleza química del material electródico y con su estructura cristalográfica
CE15	Saber diseñar experimentos que utilicen el acoplamiento de técnicas espectroscópicas y electroquímicas para elucidar mecanismos de reacción de procesos electroquímicos

Métodos e instrumentos de evaluación

Instrumentos	Porcentaje
Examen	50%
Medios de ejecución práctica	30%
Medios orales	20%

Periodo de validez de las calificaciones parciales:

El presente curso académico

Aclaraciones:

La calificación final, en la escala de 0 a 10, será la media ponderada de las diferentes actividades de evaluación

relacionadas. Para aprobar la asignatura se deberá obtener un mínimo de 4 puntos sobre 10 en cada uno de los

procedimientos de los que se compone la evaluación, y la suma de la valoración de todas las partes ha de ser igual

o superior a 5 puntos. Si en la valoración final no se superan los 5 puntos requeridos, en la segunda convocatoria

serán de nuevo evaluadas todas las partes en las que la calificación sea inferior a 5 puntos. Todos los procedimientos son recuperables.

Objetivos de desarrollo sostenible

Salud y bienestar Educación de calidad Industria, innovación e infraestructura Producción y consumo responsables

Las estrategias metodológicas y el sistema de evaluación contempladas en esta Guía Docente responderán a los principios de igualdad y no discriminación y deberán ser adaptadas de acuerdo a las necesidades presentadas por estudiantes con discapacidad y necesidades educativas especiales en los casos que se requieran. El estudiantado deberá ser informado de los riesgos y las medidas que les afectan, en especial las que puedan tener

El estudiantado deberá ser informado de los riesgos y las medidas que les afectan, en especial las que puedan tener consecuencias graves o muy graves (artículo 6 de la Política de Seguridad, Salud y Bienestar; BOUCO 23-02-23).