(Página creada con «{| style="border: none;" |style="background-color:#ffffff" valign="top" |class=icon | style="background-color:#ffffff; text-align:justify;" |...») |
|||
(No se muestran 2 ediciones intermedias del mismo usuario) | |||
Línea 8: | Línea 8: | ||
|- | |- | ||
| style="background-color:#ffffff" valign="top" |[[Image:Icono_diseño.png|class=icon]] | | style="background-color:#ffffff" valign="top" |[[Image:Icono_diseño.png|class=icon]] | ||
− | | style="background-color:#ffffff; text-align:justify;" | <font size=3>'''Automatic software design'''. Tasks belonging to the analysis and design phases are clearly related to human decisions, so their success strongly depends on the | + | | style="background-color:#ffffff; text-align:justify;" | <font size=3>'''Automatic software design'''. Tasks belonging to the analysis and design phases are clearly related to human decisions, so their success strongly depends on the engineer's expertise and abilities. Despite the related difficulties, SBSE has started to face the automatic design of software in an automatic way (Räihä, 2010). Great efforts are made to address tasks like reverse engineering for software product lines (Lopez-Herrejon ''et al''., 2015), web services design (Parejo ''et al''., 2014) or software architecture optimization (Ramírez ''et al''., 2015b). In this scenario, metaheuristic models should be viewed as a support to software engineers, instead of their replacement. Therefore, the objective is to assist them during the conception, modification and enhancement of software since its very early development.</font> |
|- | |- | ||
| style="background-color:#ffffff" valign="top" |[[Image:Icono_interactividad.png|class=icon]] | | style="background-color:#ffffff" valign="top" |[[Image:Icono_interactividad.png|class=icon]] | ||
− | | style="background-color:#ffffff; text-align:justify;" | <font size=3>'''Interactive algorithms (''human-in-the-loop'')'''. Software Engineering tasks can be complex to simulate, especially those when the automatic evaluation of the quality of solutions is not possible. The system analysis phase might be an example. In this scenario, the active participation of the expert in the optimization process is a must, implying the consideration of the ''human-in-the-loop''. This kind of approaches allows integrating expert's abilities with the search process in order to obtain more satisfactory results. Although there are some proposals in areas like software design (Simons and Parmee, 2012; Simons ''et al''., 2014) and testing (Marculescu ''et al''., 2015), interactive mechanisms still require an in-depth analysis. Factors usually involved in interactive approaches are the role of the expert in the search process, the specific requirements of the problem under study or the user fatigue ( | + | | style="background-color:#ffffff; text-align:justify;" | <font size=3>'''Interactive algorithms (''human-in-the-loop'')'''. Software Engineering tasks can be complex to simulate, especially those when the automatic evaluation of the quality of solutions is not possible. The system analysis phase might be an example. In this scenario, the active participation of the expert in the optimization process is a must, implying the consideration of the ''human-in-the-loop''. This kind of approaches allows integrating expert's abilities with the search process in order to obtain more satisfactory results. Although there are some proposals in areas like software design (Simons and Parmee, 2012; Simons ''et al''., 2014) and testing (Marculescu ''et al''., 2015), interactive mechanisms still require an in-depth analysis. Factors usually involved in interactive approaches are the role of the expert in the search process, the specific requirements of the problem under study or the user fatigue (Ramírez ''et al''., 2015a).</font> |
|- | |- | ||
| style="background-color:#ffffff" valign="top" |[[Image:Icono_pruebas.png|class=icon]] | | style="background-color:#ffffff" valign="top" |[[Image:Icono_pruebas.png|class=icon]] | ||
Línea 21: | Línea 21: | ||
<hr /> | <hr /> | ||
− | ''' | + | '''References''' |
#Del Sagrado, J., del Águila, I.M., Orellana, F.J. (2015). ''Multi-objective Ant Colony Optimization for Requirements Selection''. Empirical Software Engineering 20(3): 577-610. | #Del Sagrado, J., del Águila, I.M., Orellana, F.J. (2015). ''Multi-objective Ant Colony Optimization for Requirements Selection''. Empirical Software Engineering 20(3): 577-610. | ||
#Dolado, J.J. (2001). ''On the problem of the software cost function''. Information and Software Technology 43(1): 61-72. | #Dolado, J.J. (2001). ''On the problem of the software cost function''. Information and Software Technology 43(1): 61-72. |
Revisión actual del 13:22 12 jun 2016
Challenges
There are still many research challenges to face within the SBSE field. Among others, the consortium counts with great experience on addressing the following problems:
References
- Del Sagrado, J., del Águila, I.M., Orellana, F.J. (2015). Multi-objective Ant Colony Optimization for Requirements Selection. Empirical Software Engineering 20(3): 577-610.
- Dolado, J.J. (2001). On the problem of the software cost function. Information and Software Technology 43(1): 61-72.
- Dolado, J.J., Otero, M.C., Harman, M. (2014) Equivalence hypothesis testing in experimental software engineering. Software Quality Journal 22(2): 215-238.
- Domínguez-Jiménez, J. J., Estero-Botero, A., García-Domínguez, A., Medina-Bulo, I. (2011). Evolutionary Mutation Testing. Information and Software Technology 53(10): 1108-1123.
- Ferrer, J., Kruse, P.M., Chicano, F., Alba, E. (2015). Search based algorithms for test sequence generation in functional testing. Information and Software Technology 58: 419-432.
- Harman, M., Jia, Y., Zhang, Y. (2015). Achievements, open problems and challenges for search based software testing. Proc. of the IEEE International Conference on Software Testing, Verification and Validation (ICST'15), pp. 1-12.
- Harman, M., Krinke, J., Medina-Bulo, I., Palomo-Lozano, F., Ren, J., Yoo, S. (2014). “Exact scalable sensitivity for the next release problem”. ACM Transactions on Software. Engineering and Methodology 23(2): 19.
- Lopez-Herrejon, R.E., Ferrer J., Chicano F., Haslinger E.N., Egyed A., Alba E. (2014). A parallel evolutionary algorithm for prioritized pairwise testing of software product lines. Proc. of the Genetic and Evolutionary Computation Conference (GECCO '14), pp. 1255-1262.
- Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo J.A., Benavides, D., Segura, S., Egyed, A. (2015). An assessment of search-based techniques for reverse engineering feature models. Journal of Systems and Software 103: 353-369.
- Marcurlescu, B., Feldt, R., Torkar, R., Poulding, S. (2015). An initial industrial evaluation of interactive search-based testing for embedded software. Applied Soft Computing 29: 26-30.
- Parejo, J.A., Segura, S., Fernández, P., Ruiz-Cortés, A. (2014). "QoS-aware web services composition using GRASP with Path Relinking". Expert Systems with Applications 41(9): 4211-4233.
- Pitangueira, A.M., Maciel, R.S.P, de Oliveira Barros, M. (2015). Softrare requirements selection and prioritization using SBSE approaches: A systematic review and mapping of the literature. Journal of Systems and Software 103: 267-280.
- Räihä, O. (2010). Search-based software design. Computer Science Review 4: 203-249.
- Ramírez, A., Romero, J.R., Ventura, S. (2015a). Interactividad en el descubrimiento evolutivo de arquitecturas software. Actas de XX Jornadas españolas de Ingeniería del Software y Bases de Datos (JISBD), Santander.
- Ramírez, A., Romero, J.R., Ventura, S. (2015b). An evolutionary approach for the evolutionary discovery of software architectures. Information Sciences 305: 234-255.
- Simons, C.L., Parmee, I.C. (2012). Elegant Object-Oriented Software Design via Interactive, Evolutionary Computation. IEEE Transactions on Systems, Man and Cybernetics, part C: Applications and Reviews 42(6): 1797-1805.
- Simons, C.L., Smith, J., White, P. (2014). Interactive Ant Colony Optimization (iACO) for Early Lifecycle Software Design. Swarm Intelligence 8(2):139-157.