Version Control with Subversion
For Subversion 1.2

(book compiled from Revision 2147)

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: For Subversion 1.2: (book com-
piled from Revision 2147)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michagl Pilato

Published (TBA)
Copyright © 2002, 2003, 2004, 2005, 2006 Ben Collins-SussmanBrian W. FitzpatrickC. Michael Pilato

This work is licensed under the Creative Commons Attribution Licenses To view a copy of this license, visit ht-
tp://creativecommons.org/licenses/by/2.0/ or send aletter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents

0T Y0 o P Xi
1= = o PP Xiii
AUAIBNCE ..ot et et et et e e e e e aaans Xiii
HOW t0 R8O thIS BOOK ... ceeiiii ettt Xiii
Conventions USed iN ThISBOOKuuuiiiiiiiiiiiiii e e et e et eeeetn e eeees Xiv
TypPOgraphiC CONVENIONSveuiieiieiieee eean s Xiv

oo P Xiv
Organization Of TRISBOOKuiiiiiiiiiiii e XV
TRISBOOK IS IR ...ttt et e et e et e et e e e e eaens XVi
F e (g Te Y=o o 0 1= XVi
From Ben COllINS-SUSSIMEBNcvevtieeiiiieeee ittt e ettt e e e et e e e et e e e eaan s XVii

From Brian W. FItZPatriCKcoouniieiiii e e e e e e XVii

From C. MiCh@el PIELOccouniiiiiei e e e Xvii

O o1 oo [1 o o PP PPPRR 1
WHEL 1S SUDVEISION? ...ttt ettt et e et e et e et e e et et et e e et e e et e e ean e aeanaaeanaes 1
ST o)V £ Lo g K] 1S o] Y 1
SUDVEISION'S FEBIUMES ...ttt e et e et e e et et e e e e et e e e et e e e e et e e e eranaes 2
SUBVEISION'S ATCIITECTUIE .. .eeetiii ettt e e e e e et e e e et e e e e aan s 3
INSEAITING SUDVEISION ...ttt e ettt e e ettt e e e et e e eaaa e eaees 4
SUDVEISION'S COMPONENESeeetieeetii ettt ettt et e e et e et et e e et et e e et et e e e e et e e et ab e e e enbaes 5
F N O U Tox Q= 5
A TS ol e oo S 8
QIR 00 10 Y/ 8
VA= £ T g T 1o 1Y oo = R 8
The Problem of File-Sharingco.oiiiiii e 9

The Lock-Modify-Unlock SOIULIONuuiiiiiieeiii e 9

The Copy-Modify-Merge SOIULIONcouuiiiiiie e 11
SUDVEISION TN ACLION .ottt et et et e e et e e et e e et e ean e eees 13
RVAY 0T 0 o o 1= 13
REVISIONS ..t e e aee 16

How Working Copies Track the REDOSITONYc.uuiiiiiiiiiiiiiiie e 17
Mixed ReviSion WOrKing COPIESccuuueiiiiiieee ettt ettt e e e e et e e 18
SUMIMIEIY ettt ettt et e et et ettt et et e e e e et e et e e e e e et e et e e en e e en e et e et e eaaenns 19
I C 10 o (= B o 11 | PP PPP 20
1= PSP 20
010700 P 20
Revisions. Numbers, Keywords, and Dates, Oh MY! ... 20
REVISION NUMDEY'S ... et e e e e e et e e ean e eeees 20
REVISION KEYWOITS ...t e e et e e e e e e et e ean e aeees 21
REVISION DEIES ...ttt et e et e et e et e e e et e eaes 22

F TR O gT= o (o | PP 23
2T S T oYY o] Q1Yo = P 25
Update Your WOrKing COPYuuueieiiieeiiiae ettt e et e e ee e e eaae e eees 25
Make Changesto Y our WOrking COPYcccuvuueiiiiiieiiiie ettt e et 26
EXamMIiNe YOUr CRENQESceuiiiiieii ettt e ettt e et e e e e ean e aeees 27
Resolve Conflicts (Merging Others Changes)covviiiiiii i 33
(00001401 A o0 [011 7= 1410 L= 36
LGz 1T T o o S o P 37
SV TOQ ettt 38

LS Y o T i PP 39

SV o | TP 41

Sy 0 I PP PPTRPRRN 41

A FINal WOrd ON HISIONY ..uieiiii e e e e e e e e e e e e ean e eees 42

Version Control with Subversion

Other USEful COMMEBNGSciviriieiiiiii et e e e e et e e et e e et e e e et e eeenans 42
LY e == U o P 42

Y I 0] oo A PSPPSR 43
SUMIMIBIY ettt ettt e et e et e e e e ettt et et e e et et e e et e e et e e e ra e eea e eees 43
4. BranChing @N0 MEIGINGccuuieuneiieiii et e e e e et e e et e e et e et e e et e e et e e ean e ean e eeanaaeanaes 44
WHEL'S @BFaNCNT? ... et et et 44
L0 LS T a0 = 1 - P 44
Creating @BranCh ... 46
WOrking With YOUr BranChoouuuiiiiii e 48

The Key Concepts Behind BranChesoooviiiiiiiiii e 50
Copying Changes Between BranChescoouiiiiiiiiii e 50
Copying SPECITiC CRANGEScuuiiiiie e 51

The Key Concept BENiNAd MEIGINGc.uieiiiieiii et e e e e e e e e e e e e eanaees 53

Best PractiCeS fOr MEITING ...vvuiee e et e e e e e e e e e e e e e e e e eeees 54
COMIMON USE-CBSES ..uuiiiiiieit ettt ettt et e e e e e e e e e e e et e an e e e e et e et e e aenns 57
Merging aWhole Branch t0 ANOLNEYc.uuiiiiiiii e 57
UNAOING CRENJES ... ettt e e et e et e et e e et e e ean e e ean e aeees 59
Resurrecting DEleted [tEMSiiiii e 60
Common BranChing Patternscciuuiiiiiieii e e e e e e e aaas 61
STV (e T o = YA o g (T o] o 63
1= PSPPI 64
Creating @SIMPIE TAG ...cevu ettt 65
Creating @ COMPIEX TAO .. cvuniein et e e e e e e e e aaas 65
BranCh MaiNTENANCE et e e et e et e e e e e ean e 66
LS 00 1S 0 YA - Yo U | 66

Data LIfEUIMES ...t e et e et e e e et eeeaaa e eees 67
SUMIMIBIY ettt ettt ettt et et et e e et et e e et e e et e e e e e e e e enes 68
5. REPOSITOrY AMINISIIEIIONieeiiti ettt ettt ettt e e et e et e e e e enb e e enans 69
REPOSITONY BaSICS ...t eeetie ettt ettt e et et e ettt e et e e et e et e et e e ta e e e e ea e 69
Understanding Transactions and REVISIONScc.viuiiiiii e e e 69
UNVErSiONEd PrOPEITIEScvveiiiii e e e e e e e e e e ean e eaes 70
RS 00 LS 0 YA B = B (] - 70
Repository Creation and ConfigUrationooeuuuieiiiiiie e 72
HOOK SCITDES vttt e et e e e et e e e eeta e eaees 74
Berkeley DB CONfiQUIAiONiiuiiieei et e et e e e e et e eean e eeees 77
REPOSITOrY MaINTENANCEcee ittt et e et et e et e e e e eean e 77
AN AAMINISIFAIONS TOOIKIT «..vvieeeee e e e aa s 77

LS 001 1 (0 YA O = o o 85
MaNaging DiSK SPACEceuuieiiiiie e 87
REDOSITONY RECOVEIY ...ttt e et e e et e e eaba e eees 88
Migrating @ REPOSITONYieeiiee et e et et e e et e e e e ean e aeees 89
REPOSITONY BACKUD ..eeeiieiii ettt 93

o o] o e 0= = 9
ChooSiNg @ REPOSITONY LAYOULcceuueiieeeeieeei e e ee e e e e e e e e e e e e e e e eeannas 95
Creating the Layout, and Importing Initial Dataoooeeiuiiiiiiiiiniii e 96
SUMIMIBIY ettt ettt ettt et et et et e e et et e e et et e e et e e et e e e r e e ea e eees 97
SRS aV= g @e 11 To 0] 1 o] o H PP 98
L@ < oV T PP 98
= AoV, oo = ST 99
REQUESES aNA RESPONSES ... cvvtiiieieeeieee e e e e e e e e e e e e e e e e e et s e et e e e e e e e eanaeeanaeeees 99
Client CredentialS Cachingoceeuuuieiiii e eeaans 99
Y S Y= Lol (00 (1S = LY < S PP 101
INVOKING ThE SEIVEN ..o et e e s 101
Built-in authentication and aUthOriZatIONviiuiiiii e 103

SSH authentication and authOriZatiONoovvvuiiiiiii e 105

SSH CONfigUIELiON tHICKS ...vvvieei e e e e e e e e e et eeaneeeees 106
httpd, the APaChe HT TP SEIVEL ... e 108
PrEIEOUISITESeeeiieii ettt e et et 108

Version Control with Subversion

Basic Apache ConfigUIatioNcc.uiiiiiieiii e e e e e e e e e e e e aanaees 109

PN T 11070110 1 o @] o1 o o 110
AULNOMZALTON OPLIONS ... ettt et e e e e e e s 114
(= Y €00 o [1= PP 119
Supporting Multiple Repository ACCESS MELhOUSoiiuiiiiiiii e 121
AoV g (o o B o] o] o= PSPPSR 123
RUNtIME CONFIQUIAtioON ATEA .. .vvuieiiiieee et e e e e et e et e e et e e e e eannas 123
Configuration Ar€ALAYOULceuueiiiieiii e e e e e e e e e e e e eeees 123
Configuration and the WindoWS REJISIIYiiiiiiiiiiiiieeeee e 124
ConfigUuIation OPLIONSeeeeieeee ettt ettt e e et e et e e e et e e e eera e eeees 125
00 L= TP 129
WY PrOPEITIES? ...ttt et et e e e e e e e e aanas 129
Manipulating PrOPEItIESuuiiii et e e e e e e e e e e e 130
SPECIAl PrOPEITIES . oeu ettt 133
AULOMELIC PropeErty SEEING ... oeeeeeiieeiii et 141
LOCKITIG ettt e s 141
(01] gTo [[oTo G TP 142
DiISCOVENNG IOCKS ... e e e e e 145
Breaking and Stealing lOCKSovvuiiii e 145

LOCK COMMUNICEIION ...ttt e et e e et e e e et e e e e aan s 148

Peg and Operative REVISIONSiiiiiiii it 149
EXLErNalS DEFINITIONS .. .ouiiiiie et e e e e e e et e et e e e e eanas 152
Vendor DranChES e et 153
General Vendor Branch Management ProCedureoovueiiieiiiiiiiiii e eeeeaeeaas 154
SUN_108_ ISPl oeniei e 156
(oo [z 1o o PP 157
UNAerstanding IOCAIESvuu e 157
SUbVErSION'SUSE Of IOCAIES ... e 158
Using External DIfferencing TOOISccuuiiiiiiie e e 159
EXtErNal diff ... e 160
EXErnal diff3 ..o 161
SUbVErSioN REPOSITONY URLSieiiiiiiii i et e e e e e e e e e e e e e e e e ean e e eanaees 162
8. DEVE OPEN INFOMMEBLIONeeeti ettt e et e e ettt e e e et e e e e et e e e eeaaaeeees 164
Layered LiDrary DESIGNuueieiiiiee ettt ettt ettt 164
REPOSITONY LAYEE ...ttt et e ettt e et e et e e e e et e a e e ea e 165
REPOSITONY ACCESS LAYEN .. ieiiiii ettt et e ettt e et e e e e ean e 169

L0t 1= o I 1= 172

L LS T 0T I L= e 173
The Apache Portable RUNtIME LIibrarycooouiiiiiiiiiiiii e 173

URL and Path REQUIFEMENTScevuieiiiiii ettt 173
Using Languages Other than C and Coueiiiiiiii e 174
Inside the Working Copy AdMINiStration AFEa.............viiuuiiiiiiiiee e 177
THE ENIHES I oot et eeeeeas 178
Pristine Copies and Property FIIESccveiiiiicii e e e e 179
VB D AV e 179
Programming With MemOry POOISooiiiiiiiiiii e 180
ContribUtiNg tO SUDVEISIONcuiiiei ittt et e et e et e e et e et e e e e et e e eaneaeanas 182
JOINthe COMMUNILY ..uie e e e e e e e e e e e e e e e aeees 182
GELTNE SOUMCE COUR .. .eevvtieeeei ettt e et e et e e e e et e e e eatanaeeees 183
Become Familiar with Community POIICIESooveunieiiiiii e e 183
Make and TeSt YOUr ChanQESciieuin ittt e et 184
DONAE YOUN CRANGES ... iiitieeeiii ettt ettt e et e et e e et e eeeae s 184

9. Subversion Complete REFEIENCEiiiii e e e e e eees 185
The Subversion Command Line CHENt: SVNiiiiiiiiii e e 185
SVN SWITCHIES ..t e et 185

SVN SUBCOMIMENGS ...ttt e et e e et e e e et e e eenens 188

LS = o [0 211 o 250
SVNAAMIN SWITCHES ... eee et e e e e et e e e e eennas 250

Vi

Version Control with Subversion

SVNadMIiN SUDCOMIMANASuuniiiiii ettt e et e e e e e e et e eeeenns 251

LSV 0] oo PP 268
SVNIOOK SWITCNES ..oeiieii e e 268

LS] oo PP 269

S Y TP PP TPPR 285
SVNSEIVE SWITCNES ...t ettt et e e e e aanes 285

LSy 1Y =T o PP 286

a0 To o F= Y=Y/ o T 288
SUDVES SION PrOPENTIES ..oeeiiiiiii ettt e e e ettt e e e e et e e e eaba e eeees 289

AL SUBVErSION FOr CV SUSEIS ittt ee ittt e e e et e et e e et e e e e e et e e eaeeeanaaes 292
Revision Numbers Are DIfferent NOWco.u i 292

(D= ox 0 VAN A= £ T 0] 292
More DiSCONNECted OPEItONSiierieeeiieei e e e e e e e e e e e e e e e e e et e e et e e et eaaneeannas 293
Distinction Between Status and UpPateccovuiviiiiiiii e e e e e 293

S = 11 293

(6] e = (PP PRSPPI 294

BranChES 8N0 TaAGS .. euunietuiiiii ittt ettt e e et et e et e et e et e e et e et e e e e aa s 295
MEtadata PrOPEITIES ... ceiiiie et et ettt ettt et e e e 295

1000 g! [To a2 =='o 11 1o o U 295
Binary FIleSand TranSlalionoceuuiieieeei e e e e e e e e e e e e e e e e n e e e e e e e annas 295

VA= £ T g T= o 01, Ko o L1 =S 296

YU 1101= 01107 1o o PR 296
Converting a Repository from CVSt0 SUDVEISIONiiuuiiiiiiiii et e e 296

B. WEDDAYV and AULOVEISIONING ...uuvveiineiieitieiteeeee e et e et et e e et e et e et e et e ea e e aneeaneeseeneenaeanaaannns 298
BasiC WEDDAY CONCEPLS ...evuiiiiieiiiie i e e e et e e e e e et e e e e e e et e e et e e et e e et eeaneeannas 298
Original WEBDAY ...t 298

[oV = o] 299

SUBVErSION @NA DEITAVoeeiiiiee e e e e 299

F T 100V (= To o1 oo PP 300
Client INteroperabilityo.. i e 301
Standalone WEDDAY appliCationSovvuuieiiiiiiiii e e e e 302
File-explorer WEDDAY EXIENSIONScvveiiiiiieiii e e e e e e e e e e e e e e e e aaneees 303

WebDAYV filesystem implementationov it 304

C. THIrd Party TOOISeeetiieiiiiie ettt ettt ettt e et et e e et et e e e e et e e e e et e e e eenaaeeees 306
(DR @])Y/ ¢ o o | PP 307

Vii

List of Figures

S oY= = To g I o gL = = PP 3
2.1 A typical ClIENt/SEIVEr SYSEEIM ...uuiii i ee e e e e e e e e e e e e e e et e e et e e e an e e e eaeeannnees 8
2.2. The problemM t0 AV0Iiiiiii et et 9
2.3. The 1ock-modify-UnloCK SOIULTONuuniiiiiie et eaens 10
2.4. The copy-modify-Merge SOIULTONc.uiiiiiei e e e e e e e et e e e eaaas 11
2.5. The copy-modify-merge solution (CONtINUE)couiiiniiiiiiii e 12
2.6. The repoSItory'S fllESYSIEIMvei e e e e e e e 13
R I8 1= 1= 010 = 1) Y 16
4.1. Branches of deVEIOPIMENLuuiiiii e e et e et eeaaa s 44
4.2, SEArting rePOSITONY TAYOULuuiiieii ettt et e e e et e e e e eaaa s 45
4.3. REPOSITONY WIth NEW COPY ... ettt ettt et e et e e et e e e e e e aa e e ea e aean s 47
4.4. The branching of ONefilESNISIONYciviiii e 48
8.1. Filesand directorieS in tWo diMENSIONSouuiiiiii et e et e e eeaen e eees 166
8.2. Versioning time—the third dimension!cc.cooiiiiiiiii e 167

viii

List of Tables

2.1 REPOSITONY ACCESSURLS ...iviiiiiiiiii et e e e e e e e e e e e et e e e e e e e st eeaneeannes 15
5.1. Repository Data Store COMPAISONuu.ceeeeiiteeeieeei e eeieeeee e et e aet e e e e st e eea e e e e eean e eaneeennns 70
6.1. NetWOrk Server COMPAITSONuuu ettt ettt e et et et e e et e e e et e e e e bt e e e eaan e eeenans 98
8.1. A Brief Inventory of the SUbVersion Librariesooooiiiiiic e 164
B.1. CoOmMMON WEDDAY CHENLSetiiiiiiii ettt ettt e e e e et e et e e et e e e bn e aeaaaeanaes 301

List of Examples

5.1. txn-info.sh (Reporting Outstanding TranSaCtioNS)vcvueieiiiieeiiieii e e e e e e e e 86
6.1. A sample configuration fOr anNONYMOUS GCCESS.uuiverriieinieeiieeieeee e e et e e e e e e et e e et eeeanaeeaes 115
6.2. A sample configuration for authentiCatetd 8CCESS.ciiviiiiiiiii e 116
6.3. A sample configuration for mixed authenti cated/anonymoUS @CCESS.vvvvniviineiiiieeiiieeeieeeaeeen 116
6.4. Disabling path checks altOgetNeriii e 119
7.1. Sample Registration Entries (.reg) File. ... 124
40 o T 11 =" o 5= o 160
2 o [111 =" o o7 160
T iTF WD SN e et e 161
7.5, diffBWIAD0GE ..ee e e 161
8.1. USING the REPOSITONY LBYEN ... eeieieiiet ettt e e et e e e e e e e et e e eanaeeees 168
8.2. Using the Repository Layer With Python ... 174
8.3. A PYthON SEatUS CraWWleruuiii i e e e e e e e e et e e et e e e eeaes 176
8.4. Contentsof aTypical . SVN/ €Nt ri €S Fle ..o 178
8.5. EffECtiVE POOI USBIEcceiie ettt e et et 181

Foreword

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people ac-
tually asked, but of the questions the FAQ's author wished people had asked. Perhaps you've seen the
type before:

Q: How can | use Glorbosoft XY Z to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity through our paten-
ted office groupware innovations. The answer is simple: first, click on the “Fi | €” menu, scroll
downto“l ncrease Productivity”,then...

The problem with such FAQs is that they are not, in aliteral sense, FAQs at all. No one ever called the
tech support line and asked, “How can we maximize productivity?’. Rather, people asked highly specif-
ic questions, like, “How can we change the calendaring system to send reminders two days in advance
instead of one?’ and so on. But it'salot easier to make up imaginary Frequently Asked Questions than it
is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into
a coherent, searchable whole that reflects the collective experience of users in the wild. It cals for the
patient, observant attitude of a field naturalist. No grand hypothesizing, no visionary pronouncements
here—open eyes and accurate note-taking are what's needed most.

What | love about this book is that it grew out of just such a process, and shows it on every page. It is
the direct result of the authors' encounters with users. It began with Ben Collins-Sussman's observation
that people were asking the same basic questions over and over on the Subversion mailing lists: What
are the standard workflows to use with Subversion? Do branches and tags work the same way as in other
version control systems? How can | find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer
of 2002 to write The Subversion Handbook, a sixty page manual that covered al the basics of using Sub-
version. The manua made no pretense of being complete, but it was distributed with Subversion and got
users over that initial hump in the learning curve. When O'Reilly and Associates decided to publish a
full-length Subversion book, the path of least resistance was obvious: just expand the Subversion hand-
book.

The three co-authors of the new book were thus presented with an unusua opportunity. Officialy, their
task was to write a book top-down, starting from a table of contents and an initial draft. But they also
had access to a steady stream—indeed, an uncontrollable geyser—of bottom-up source material. Subver-
sion was already in the hands of thousands of early adopters, and those users were giving tons of feed-
back, not only about Subversion, but about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists
and chat rooms incessantly, carefully noting the problems users were having in rea-life situations. Mon-
itoring such feedback is part of their job descriptions at CollabNet anyway, and it gave them a huge ad-
vantage when they set out to document Subversion. The book they produced is grounded firmly in the
bedrock of experience, not in the shifting sands of wishful thinking; it combines the best aspects of user
manual and FAQ sheet. This duality might not be noticeable on a first reading. Taken in order, front to
back, the book is simply a straightforward description of a piece of software. There's the overview, the
obligatory guided tour, the chapter on administrative configuration, some advanced topics, and of course
a command reference and troubleshooting guide. Only when you come back to it later, seeking the solu-
tion to some specific problem, does its authenticity shine out: the telling details that can only result from
encounters with the unexpected, the examples honed from genuine use cases, and most of al the sensit-
ivity to the user's needs and the user's point of view.

Of course, no one can promise that this book will answer every question you have about Subversion.

Xi

Foreword

Sometimes, the precision with which it anticipates your questions will seem eerily telepathic; yet occa-
sionally, you will stumble into a hole in the community's knowledge, and come away empty-handed.
When this happens, the best thing you can do is email <user s@ubversion.tigris.org>and
present your problem. The authors are still there, still watching, and they include not just the three listed
on the cover, but many others who contributed corrections and original material. From the community's
point of view, solving your problem is merely a pleasant side effect of a much larger project—namely,
dowly adjusting this book, and ultimately Subversion itself, to more closely match the way people actu-
aly useit. They are eager to hear from you not merely because they can help you, but because you can
help them. With Subversion as with all active free software projects, you are not alone.

L et this book be your first companion.

— Karl Fogel, Chicago, 14 March, 2004

Xii

Preface

“If C gives you enough rope to hang yourself, think of Subversion as a sort of rope storage facil-
ity.” —Brian W. Fitzpatrick

In the world of open-source software, the Concurrent Versions System (CVS) has long been the tool of
choice for version control. And rightly so. CVSitself is free software, and its non-restrictive

Preface

Experienced System Administrators
The assumption here is that you've probably used CV S before, and are dying to get a Subversion server up and
running ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration will show you how
to create your first repository and make it available over the network. After that's done, Chapter 3, Guided Tour
and Appendix A, Subversion for CVS Users are the fastest routes to learning the Subversion client while draw-
ing on your CV'S experience.

New users
Your administrator has probably set up Subversion aready, and you need to learn how to use the client. If
you've never used a version control system (like CVS), then Chapter 2, Basic Concepts and Chapter 3, Guided
Tour are avital introduction. If you're already an old hand at CV'S, chapter 3 and appendix A are the best place
to start.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. You're going to want to learn
how to do more advanced things with Subversion, such as how to use branches and perform merges (Chapter 4,
Branching and Merging), how to use Subversion's property support, how to configure runtime options
(Chapter 7, Advanced Topics), and other things. These two chapters aren't vital at first, but be sure to read them
once you're comfortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or build new software on
top of its many APIs. Chapter 8, Developer Information isjust for you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a reference guide
for al Subversion commands, and the appendices cover a number of useful topics. These are the
chapters you're mostly likely to come back to after you've finished the book.

Conventions Used in This Book

This section covers the various conventions used in this book.

Typographic Conventions

Constant width
Used for commands, command output, and switches

Constant width italic
Used for replaceableitemsin code and text

Italic
Used for file and directory names

lcons

2 Note
/ Thisicon designates a note relating to the surrounding text.

Xiv

Preface

ﬂ Tip
_) Thisicon designates a helpful tip relating to the surrounding text.

° Warning
Thisicon designates awarning relating to the surrounding text.

Note that the source code examples are just that—examples. While they will compile with the proper
compiler incantations, they are intended to illustrate the problem at hand, not necessarily serve as ex-
amples of good programming style.

Organization of This Book

The chapters that follow and their contents are listed here:

Chapter 1, Introduction
Covers the history of Subversion as well as its features, architecture, components, and install methods. Also in-
cludes a quick-start guide.

Chapter 2, Basic Concepts
Explains the basics of version control and different versioning models, along with Subversion's repository,
working copies, and revisions.

Chapter 3, Guided Tour
Walks you through a day in the life of a Subversion user. It demonstrates how to use Subversion to obtain,
modify, and commit data.

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and merging, common use
cases, how to undo changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and the
tools you can useto do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and the three ways to access your repository: HTTP, thesvn
protocol, and local access. It also covers the details of authentication, authorization and anonymous access.

Chapter 7, Advanced Topics
Explores the Subversion client configuration files, file and directory properties, how to i gnor e files in your
working copy, how to include external treesin your working copy, and lastly, how to handle vendor branches.

Chapter 8, Developer Information
Describes the internals of Subversion, the Subversion filesystem, and the working copy administrative areas
from a programmer's point of view. Demonstrates how to use the public APIs to write a program that uses Sub-
version, and most importantly, how to contribute to the development of Subversion.

Chapter 9, Subversion Complete Reference
Explains in great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the
whole family!

Appendix A, Subversion for CVSUsers
Covers the similarities and differences between Subversion and CV'S, with numerous suggestions on how to

XV

Preface

break al the bad habits you picked up from years of using CVS. Included are descriptions of Subversion revi-
sion numbers, versioned directories, offline operations, update vs. status, branches, tags, metadata, conflict res-
olution, and authentication.

Appendix B, WebDAV and Autoversioning
Describes the details of WebDAV and DeltaV, and how you can configure your Subversion repository to be
mounted read/write asa DAV share.

Appendix C, Third Party Tools
Discusses tools that support or use Subversion, including alternative client programs, repository browser tools,
and so on.

This Book is Free

This book started out as bits of documentation written by Subversion project developers, which were
then coalesced into a single work and rewritten. As such, it has always been under a free license. (See
Appendix D, Copyright.) In fact, the book was written in the public eye, as a part of Subversion. This
means two things:

* Youwill alwaysfind the latest version of this book in the book's own Subversion repository.

* You can distribute and make changes to this book however you wish—it's under a free license. Of
course, rather than distribute your own private version of this book, we'd much rather you send feed-
back and patches to the Subversion developer community. See the section called “ Contributing to
Subversion” to learn about joining this community.

A relatively recent online version of this book can be found at http://svnbook.red-bean.com.

Acknowledgments

This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors
would like to thank Brian Behlendorf and CollabNet for the vision to fund such a risky and ambitious
new Open Source project; Jim Blandy for the original Subversion name and design—we love you, Jm;
Karl Fogel for being such agood friend and a great community leader, in that order.

Thanks to O'Reilly and our editors, Linda Mui and Tatiana Diaz for their patience and support.

Finally, we thank the countless people who contributed to this book with informal reviews, suggestions,
and fixes: While this is undoubtedly not a complete list, this book would be incomplete and incorrect
without the help of: Jani Averbach, Ryan Barrett, Francois Beausoleil, Jennifer Bevan, Matt Blais, Zack
Brown, Martin Buchholz, Brane Cibgj, John R. Daily, Peter Davis, Olivier Davy, Robert P. J. Day, Mo
DelJong, Brian Denny, Joe Drew, Nick Duffek, Ben Elliston, Justin Erenkrantz, Shlomi Fish, Julian
Foad, Chris Foote, Martin Furter, Dave Gilbert, Eric Gillespie, Matthew Gregan, Art Haas, Greg Hud-
son, Alexis Huxley, Jens B. Jorgensen, Tez Kamihira, David Kimdon, Mark Benedetto King, Andreas J.
Koenig, Nuutti Kotivuori, Matt Kraai, Scott Lamb, Vincent Lefevre, Morten Ludvigsen, Paul Lussier,
Bruce A. Mah, Philip Martin, Feliciano Matias, Patrick Mayweg, Gareth McCaughan, Jon Middleton,
Tim Moloney, Mats Nilsson, Joe Orton, Amy Lyn Pilato, Kevin Pilch-Bisson, Dmitriy Popkov, Michael
Price, Mark Proctor, Steffen Prohaska, Daniel Rall, Tobias Ringstrom, Garrett Rooney, Joel Rosdahl,
Christian Sauer, Larry Shatzer, Russell Steicke, Sander Striker, Erik Sjoelund, Johan Sundstroem, John
Szakmeister, Mason Thomas, Eric Wadsworth, Colin Watson, Alex Waugh, Chad Whitacre, Josef Wolf,
Blair Zajac, and the entire Subversion community.

1oh, and thanks, Karl, for being too overworked to write this book yourself.

XVi

http://svnbook.red-bean.com

From Ben Collins-Sussman

Chapter 1. Introduction

Version control is the art of managing changes to information. It has long been a critical tool for pro-
grammers, who typically spend their time making small changes to software and then undoing those
changes the next day. But the usefulness of version control software extends far beyond the bounds of
the software development world. Anywhere you can find people using computers to manage information
that changes often, there is room for version control. And that's where Subversion comes into play.

This chapter contains a high-level introduction to Subversion—what it is; what it does; how to get it.

What is Subversion?

Subversion is a free/open-source version control system. That is, Subversion manages files and director-
ies over time. A tree of filesis placed into a central

There's also a CollabNet Team Edition (CTE) offering aimed at smaller groups.

http://www.collab.net

Introduction

Behlendorf and Jason Robbins of CollabNet, and Greg Stein (at the time an independent developer act-
ive in the WebDAV/DeltaV specification process), Subversion quickly attracted a community of active
developers. It turned out that many people had had the same frustrating experiences with CV'S, and wel-
comed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version
control methodology, they just wanted to fix CVS. They decided that Subversion would match CVS's
features, and preserve the same development model, but not duplicate CVS's most obvious flaws. And
although it did not need to be a drop-in replacement for CVS, it should be similar enough that any CVS
user could make the switch with little effort.

After fourteen months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Sub-
version developers stopped using CV'S to manage Subversion's own source code, and started using Sub-
version instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a
few full-time Subversion developers), Subversion is run like most open-source projects, governed by a
loose, transparent set of rules that encourage meritocracy. CollabNet's copyright license is fully compli-
ant with the Debian Free Software Guidelines. In other words, anyone is free to download, modify, and
redistribute Subversion as he pleases; no permission from CollabNet or anyone elseis required.

Subversion's Features

When discussing the features that Subversion brings to the version control table, it is often helpful to
speak of them in terms of how they improve upon CVSs design. If you're not familiar with CVS, you
may not understand all of these features. And if you're not familiar with version control at all, your eyes
may glaze over unless you first read Chapter 2, Basic Concepts, in which we provide a gentle introduc-
tion to version control in general.

Subversion provides:

Directory versioning
CV S only tracks the history of individual files, but Subversion implements a “virtual” versioned filesystem that
tracks changes to whole directory trees over time. Files and directories are versioned.

True version history
Since CVS is limited to file versioning, operations such as copies and renames—which might happen to files,
but which are really changes to the contents of some containing directory—aren't supported in CVS. Addition-
ally, in CVS you cannot replace a versioned file with some new thing of the same name without the new item
inheriting the history of the old—perhaps completely unrelated—file. With Subversion, you can add, delete,
copy, and rename both files and directories. And every newly added file begins with afresh, clean history al its
own.

Atomic commits
A collection of modifications either goes into the repository completely, or not at all. This allows developers to
construct and commit changes as logical chunks, and prevents problems that can occur when only a portion of a
set of changesis successfully sent to the repository.

Versioned metadata
Each file and directory has a set of properties—keys and their values—associated with it. You can create and
store any arbitrary key/value pairs you wish. Properties are versioned over time, just like file contents.

Choice of network layers
Subversion has an abstracted notion of repository access, making it easy for people to implement new network
mechanisms. Subversion can plug into the Apache HTTP Server as an extension module. This gives Subversion
a big advantage in stability and interoperability, and instant access to existing features provided by that serv-
er—authentication, authorization, wire compression, and so on. A more lightweight, standalone Subversion

Introduction

server processis also available. This server speaks a custom protocol which can be easily tunneled over SSH.

Consistent data handling
Subversion expresses file differences using a binary differencing agorithm, which works identically on both
text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally compressed in
the repository, and differences are transmitted in both directions across the network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion creates branches and
tags by simply copying the project, using a mechanism similar to a hard-link. Thus these operations take only a
very small, constant amount of time.

Hackability
Subversion has no historical baggage; it is implemented as a collection of shared C libraries with well-defined
APIs. This makes Subversion extremely maintainable and usable by other applications and languages.

Subversion's Architecture

Figure 1.1, “Subversion's Architecture” illustrates what one might call a “mile-high” view of Subver-
sion'sdesign.

Figure 1.1. Subversion's Architecture

Introduction

I
[
commandling
Client app GUI client apps
—

On one end is a Subversion repository that holds all of your versioned data. On the other end is your
Subversion client program, which manages local reflections of portions of that versioned data (called
“working copies’). Between these extremes are multiple routes through various Repository Access (RA)
layers. Some of these routes go across computer networks and through network servers which then ac-
cess the repository. Others bypass the network altogether and access the repository directly.

Installing Subversion

Subversion is built on a portability layer called APR—the Apache Portable Runtime library. The APR
library provides all the interfaces that Subversion needs to function on different operating systems: disk
access, network access, memory management, and so on. While Subversion is able to use Apache as one
of its network server programs, its dependence on APR does not mean that Apache is a required com-

4

ponent. APR is a standalone library useable by any application. It does mean, however, that like Apache,
Subversion clients and servers run on any operating system that the Apache httpd server runs on: Win-
dows, Linux, al flavors of BSD, Mac OS X, Netware, and others.

The easiest way to get Subversion is to download a binary package built for your operating system. Sub-
version's website (http://subversion.tigris.org) often has these packages available for download, posted
by volunteers. The site usually contains graphical installer packages for users of Microsoft operating
systems. If you run a Unix-like operating system, you can use your system's native package distribution
system (RPMs, DEBS, the portstree, etc.) to get Subversion.

Alternately, you can build Subversion directly from source code. From the Subversion website, down-
load the latest source-code release. After unpacking it, follow the instructions in the | NSTALL file to
build it. Note that a released source package contains everything you need to build a command-line cli-
ent capable of talking to a remote repository (in particular, the apr, apr-util, and neon libraries). But op-
tional portions of Subversion have many other dependencies, such as Berkeley DB and possibly Apache
httpd. If you want to do a complete build, make sure you have all of the packages documented in the
| NSTALL file. If you plan to work on Subversion itself, you can use your client program to grab the
latest, bleeding-edge source code. Thisis documented in the section called “ Get the Source Code”.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following is a quick overview of what
you get. Don't be alarmed if the brief descriptions leave you scratching your head—there are plenty
more pages in this book devoted to alleviating that confusion.

svn

The command-line client program.

svnversion

A program for reporting the state (in terms of revisions of the items present) of aworking copy.

svnlook

A tool for inspecting a Subversion repository.

svnadmin

A tool for creating, tweaking or repairing a Subversion repository.

svndumpfilter

A program for filtering Subversion repository dump streams.

mod_dav_svn

A plug-in module for the Apache HTTP Server, used to make your repository available to others over a net-

work.

svnserve

A custom standalone server program, runnable as a daemon process or invokable by SSH; another way to make
your repository available to others over a network.

http://subversion.tigris.org

Introduction

stration will get you up and running. Along the way, we give links to the relevant chapters of this book.

If you're new to the entire concept of version control or to the “copy-modify-merge” model used by both
CV S and Subversion, then you should read Chapter 2, Basic Concepts before going any further.

2 Note

/ The following example assumes that you have svn, the Subversion command-line client,
and svnadmin, the administrative tool, ready to go. It also assumes you are using Subver-
sion 1.2 or later (run svn --version to check.)

Subversion stores all versioned datain a central repository. To begin, create a new repository:

$ svnadm n create /path/to/repos
$ |Is /path/tol/ repos
conf/ dav/ db/ format hooks/ |ocks/ README. txt

This command creates a new directory / pat h/ t o/ r epos which contains a Subversion repository.
This new directory contains (among other things) a collection of database files. Y ou won't see your ver-
sioned files if you peek inside. For more information about repository creation and maintenance, see
Chapter 5, Repository Administration.

Subversion has no concept of a “project”. The repository is just a virtual versioned filesystem, a large
tree that can hold anything you wish. Some administrators prefer to store only one project in a reposit-
ory, and others prefer to store multiple projects in a repository by placing them into separate directories.
The merits of each approach are discussed in the section called “ Choosing a Repository Layout”. Either
way, the repository only manages files and directories, so it's up to humans to interpret particular direct-
ories as “projects’. So while you might see references to projects throughout this book, keep in mind
that we're only ever talking about some directory (or collection of directories) in the repository.

In this example, we assume that you already have some sort of project (a collection of files and director-
ies) that you wish to import into your newly created Subversion repository. Begin by organizing them
into a single directory called mypr oj ect (or whatever you wish). For reasons that will be clear later
(see Chapter 4, Branching and Merging), your project’s tree structure should contain three top-level dir-
ectories named br anches, t ags, and t r unk. Thet r unk directory should contain al of your data,
whilebr anches andt ags directories are empty:

[t mp/ nyproj ect/ branches/

/tmp/ nyproj ect/tags/

[t mp/ nyproj ect/trunk/
foo.c
bar.c
Makefile

The branches, t ags, and t r unk subdirectories aren't actually required by Subversion. They're
merely a popular convention that you'll most likely want to use later on.

Once you have your tree of dataready to go, import it into the repository with the svn import command
(see the section called “svn import”):

$ svn inmport /tnp/nyproject file:///path/to/repos/nyproject -m"initial inport"
Addi ng /tmp/ nyproj ect/ branches
Addi ng /tmp/ nyproj ect/tags

Introduction

Addi ng [t p/ nyproj ect/trunk

Addi ng /tmp/ nyproj ect/trunk/foo.c
Addi ng /tmp/ nyproject/trunk/bar.c
Addi ng /tmp/ nyproj ect/trunk/ Makefile

ébrrm'tted revision 1.
$

Now the repository contains this tree of data. As mentioned earlier, you won't see your files by directly
peeking into the repository; they're all stored within a database. But the repository's imaginary filesys-
tem now contains atop-level directory named mypr oj ect , which in turn contains your data.

Note that the original / t np/ mypr oj ect directory is unchanged; Subversion is unaware of it. (In fact,
you can even delete that directory if you wish.) In order to start manipulating repository data, you need

to create a new “working copy” of the data, a sort of private workspace. Ask Subversion to “check out”
aworking copy of the mypr oj ect / t r unk directory in the repository:

$ svn checkout file:///path/to/repos/ myproject/trunk myproject
A nyproject/foo.c

A nyproject/bar.c

A nyproject/Mkefile

éﬁecked out revision 1.

Now you have a persona copy of part of the repository in a new directory named mypr oj ect . You
can edit the files in your working copy and then commit those changes back into the repository.

» Enter your working copy and edit afile's contents.

* Run svn diff to see unified diff output of your changes.

* Run svn commit to commit the new version of your file to the repository.

* Run svn update to bring your working copy “up-to-date” with the repository.

For afull tour of all the things you can do with your working copy, read Chapter 3, Guided Tour.

At this point, you have the option of making your repository available to others over a network. See
Chapter 6, Server Configuration to learn about the different sorts of server processes available and how
to configure them.

Chapter 2. Basic Concepts

This chapter is a short, casual introduction to Subversion. If you're new to version control, this chapter is
definitely for you. We begin with a discussion of genera version control concepts, work our way into
the specific ideas behind Subversion, and show some simple examples of Subversion in use.

Even though the examples in this chapter show people sharing collections of program source code, keep
in mind that Subversion can manage any sort of file collection—it's not limited to helping computer pro-
grammers.

The Repository

Subversion is a centralized system for sharing information. At its core is a repository, which is a central
store of data. The repository stores information in the form of a filesystem tree—a typical hierarchy of
files and directories. Any number of clients connect to the repository, and then read or write to these
files. By writing data, a client makes the information available to others; by reading data, the client re-
ceivesinformation from others. Figure 2.1, “A typical client/server system” illustrates this.

Figure 2.1. A typical client/server system

Repaository

So why is thisinteresting? So far, this sounds like the definition of atypical file server. And indeed, the
repository is a kind of file server, but it's not your usua breed. What makes the Subversion repository
special isthat it remembers every change ever written to it: every change to every file, and even changes
to the directory treeitself, such asthe addition, deletion, and rearrangement of files and directories.

When a client reads data from the repository, it normally sees only the latest version of the filesystem
tree. But the client also has the ability to view previous states of the filesystem. For example, aclient can
ask historical questions like, “What did this directory contain last Wednesday?’ or “Who was the last
person to change this file, and what changes did he make?’ These are the sorts of questions that are at
the heart of any version control system: systems that are designed to record and track changes to data
over time.

Versioning Models

The core mission of a version control system is to enable collaborative editing and sharing of data. But
different systems use different strategies to achieve this.

Basic Concepts

The Problem of File-Sharing

All version control systems have to solve the same fundamental problem: how will the system allow
users to share information, but prevent them from accidentally stepping on each other's feet? It's all too
easy for users to accidentally overwrite each other's changes in the repository.

Consider the scenario shown in Figure 2.2, “The problem to avoid”. Suppose we have two co-workers,
Harry and Sally. They each decide to edit the same repository file at the same time. If Harry saves his
changes to the repository first, then it's possible that (a few moments later) Sally could accidentally
overwrite them with her own new version of the file. While Harry's version of the file won't be lost
forever (because the system remembers every change), any changes Harry made won't be present in
Sally's newer version of the file, because she never saw Harry's changes to begin with. Harry's work is
till effectively lost—or at least missing from the latest version of the file—and probably by accident.
Thisis definitely a situation we want to avoid!

Figure 2.2. The problem to avoid

Two users read the same file They both begin fa edit their copies
Repository Repository

The Lock-Modify-Unlock Solution

Many version control systems use a lock-modify-unlock model to address the problem of many authors
clobbering each other's work. In this model, the repository allows only one person to change afile at a
time. This exclusivity policy is managed using locks. Harry must “lock” afile before he can begin mak-
ing changes to it. If Harry has locked afile, then Sally cannot also lock it, and therefore cannot make
any changes to that file. All she can do is read the file, and wait for Harry to finish his changes and re-

9

lease his lock. After Harry unlocks the file, Sally can take her turn by locking and editing the file. Fig-
ure 2.3, “The lock-modify-unlock solution” demonstrates this simple solution.

Figure 2.3. Thelock-modify-unlock solution

Harey “lacks” file A, then copies While Harry edits, Saily's lock
it for editing attempt faits

Repository Repository

Basic Concepts

more. The locking system was powerless to prevent the problem—yet it somehow provided a false
sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a
safe, insulated task, and thus not bother discussing their incompatible changes early on.

The Copy-Modify-Merge Solution

Subversion, CVS, and other version control systems use a copy-modify-merge model as an aternative to
locking. In this model, each user's client contacts the project repository and creates a persona working
copy—a local reflection of the repository's files and directories. Users then work in parallel, modifying
their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately a human being is responsible for making it
happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied
from the repository. They work concurrently, and make changes to the same file A within their copies.
Sally saves her changes to the repository first. When Harry attempts to save his changes later, the repos-
itory informs him that hisfile A is out-of-date. In other words, that file A in the repository has somehow
changed since he last copied it. So Harry asks his client to merge any new changes from the repository
into his working copy of file A. Chances are that Sally's changes don't overlap with his own; so once he
has both sets of changes integrated, he saves his working copy back to the repository. Figure 2.4, “The
copy-modify-merge solution” and Figure 2.5, “The copy-modify-merge solution (continued)” show this
process.

Figure 2.4. The copy-modify-merge solution

Two users copy the same file They both begin fo edit their copies

Basic Concepts

Figure 2.5. The copy-modify-mer ge solution (continued)

[[——

a—rnnd o e V= e =

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a con-
flict, and it's usually not much of a problem. When Harry asks his client to merge the latest repository
changes into his working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll
be able to see both sets of conflicting changes, and manually choose between them. Note that software
can't automatically resolve conflicts; only humans are capable of understanding and making the neces-
sary intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a
discussion with Sally—he can safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly.
Users can work in parallel, never waiting for one another. When they work on the samefiles, it turns out
that most of their concurrent changes don't overlap at al; conflicts are infrequent. And the amount of
timeit takesto resolve conflictsis far less than the time lost by alocking system.

In the end, it all comes down to one critical factor: user communication. When users communicate
poorly, both syntactic and semantic conflicts increase. No system can force users to communicate per-
fectly, and no system can detect semantic conflicts. So there's no point in being lulled into afalse prom-
ise that alocking system will somehow prevent conflicts; in practice, locking seems to inhibit productiv-
ity more than anything else.

12

Basic Concepts

When L ocking is Necessary

While the lock-modify-unlock model is considered generally harmful to collaboration, there are till times
when locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually mergeable: that is, that
the mgjority of the files in the repository are line-based text files (such as program source code). But for files
with binary formats, such as artwork or sound, it's often impossible to merge conflicting changes. In these
situations, it really is necessary to users to take strict turns when changing the file. Without serialized access,
somebody ends up wasting time on changes that are ultimately discarded.

While CVS and Subversion are still primarily copy-modify-merge systems, they both recognize the need to
lock an occasional file and provide mechanisms for this. See the section called “Locking”.

Subversion in Action

It's time to move from the abstract to the concrete. In this section, we'll show real examples of Subver-
sion being used.

Working Copies

You've aready read about working copies, now we'll demonstrate how the Subversion client creates and
uses them.

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of
files. You can edit these files however you wish, and if they're source code files, you can compile your
program from them in the usual way. Y our working copy is your own private work area: Subversion will
never incorporate other people's changes, nor make your own changes available to others, until you ex-
plicitly tell it to do so. Y ou can even have multiple working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work properly,
Subversion provides you with commands to “publish” your changes to the other people working with
you on your project (by writing to the repository). If other people publish their own changes, Subversion
provides you with commands to merge those changes into your working directory (by reading from the

repository).

A working copy aso contains some extra files, created and maintained by Subversion, to help it carry
out these commands. In particular, each directory in your working copy contains a subdirectory named
. svn, aso known as the working copy administrative directory. The files in each administrative direct-
ory help Subversion recognize which files contain unpublished changes, and which files are out-of-date
with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects; usualy, each
project is a subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy
will usually correspond to a particular subtree of the repository.

For example, suppose you have a repository that contains two software projects, pai nt and cal c.

Each project lives in its own top-level subdirectory, as shown in Figure 2.6, “The repository's filesys-
tem”.

Figure 2.6. Therepository'sfilesystem

13

Basic Concepts

k |

calc

D Makefile

To get aworking copy, you must check out some subtree of the repository. (The term “check out” may
sound like it has something to do with locking or reserving resources, but it doesn't; it simply creates a
private copy of the project for you.) For example, if you check out / cal c, you will get aworking copy
likethis:

$ svn checkout http://svn.exanpl e.comrepos/calc
A cal c/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 56.

$1s -Acalc
Makefile integer.c button.c .svn/

The list of letter A's indicates that Subversion is adding a number of items to your working copy. You
now have a persona copy of the repository's /cal ¢ directory, with one additiona
entry—. svn—uwhich holds the extra information needed by Subversion, as mentioned earlier.

Repository URL s

Subversion repositories can be accessed through many different methods—on local disk, or through various
network protocols. A repository location, however, is aways a URL. Table 2.1, “Repository Access URLS’
describes how different URL schemas map to the available access methods.

14

Basic Concepts

Table2.1. Repository Access URL s

Schema Access M ethod

file://l] direct repository access (on local disk)

http:// access via WebDAV protocol to Subversion-aware
Apache server

https:// sameashtt p: //, but with SSL encryption.

svn:// access via custom protocol to an svnser ve server

svn+ssh:// sameassvn: / / , but through an SSH tunnel.

For more information on how Subversion parses URLSs, see the section called “ Subversion Repository URLS'.

Suppose you make changesto but t on. c. Since the . svn directory remembers the file's modification
date and original contents, Subversion can tell that you've changed the file. However, Subversion does
not make your changes public until you explicitly tell it to. The act of publishing your changes is more
commonly known as committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's commit command:

$ svn commit button.c
Sendi ng button.c
Transmitting file data .
Committed revision 57.

Now your changes to but t on. ¢ have been committed to the repository; if another user checks out a
working copy of / cal c, they will see your changesin the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out a working copy of / cal ¢ at the same time
you did. When you commit your change to but t on. ¢, Sally'sworking copy is left unchanged; Subver-
sion only modifies working copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the Sub-
version update command. Thiswill incorporate your changes into her working copy, as well as any oth-
ers that have been committed since she checked it out.

$ pwd
/hone/sal ly/cal ¢

$1s -A
.svn/ Makefile integer.c button.c

$ svn update
U button.c
Updated to revision 57.

The output from the svn update command indicates that Subversion updated the contents of but -
t on. c. Note that Sally didn't need to specify which files to update; Subversion uses the information in
the . svn directory, and further information in the repository, to decide which files need to be brought
up to date.

15

Revisions

An svn commit operation can publish changes to any number of files and directories as a single atomic
transaction. In your working copy, you can change files contents, create, delete, rename and copy files
and directories, and then commit the complete set of changes as a unit.

In the repository, each commit is treated as an atomic transaction: either al the commit's changes take
place, or none of them take place. Subversion tries to retain this atomicity in the face of program
crashes, system crashes, network problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called arevi-
sion. Each revision is assigned a unique natural number, one greater than the number of the previous re-
vision. The initia revision of afreshly created repository is numbered zero, and consists of nothing but
an empty root directory.

Figure 2.7, “The repository” illustrates a nice way to visualize the repository. Imagine an array of revi-

sion numbers, starting at 0, stretching from left to right. Each revision number has a filesystem tree
hanging below it, and each treeis a*“ snapshot” of the way the repository looked after a commit.

Figure2.7. Therepository

0 1 2 3

Global Revision Numbers

Unlike those of many other version control systems, Subversion's revision numbers apply to entire trees, not
individual files. Each revision number selects an entire tree, a particular state of the repository after some

Basic Concepts

It's important to note that working copies do not always correspond to any single revision in the reposit-
ory; they may contain files from several different revisions. For example, suppose you check out a work-
ing copy from arepository whose most recent revision is 4:

cal c/ Makefile: 4
integer.c:4
button.c: 4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However,
suppose you make a change to but t on. ¢, and commit that change. Assuming no other commits have
taken place, your commit will create revision 5 of the repository, and your working copy will now look
likethis:

cal c/ Makefile: 4
i nteger.c: 4
button.c:5

Suppose that, at this point, Sally commits a changeto i nt eger . c, creating revision 6. If you use svn
update to bring your working copy up to date, then it will look like this:

cal c/ Makefile: 6
integer.c:6
button.c: 6

Sally's change to i nt eger . ¢ will appear in your working copy, and your change will still be present
in but t on. c. In this example, the text of Makefi | e isidentical in revisions 4, 5, and 6, but Subver-
sion will mark your working copy of Makef i | e with revision 6 to indicate that it is still current. So,
after you do a clean update at the top of your working copy, it will generally correspond to exactly one
revision in the repository.

How Working Copies Track the Repository

For each file in a working directory, Subversion records two essential pieces of information in the
. svn/ administrative area:

» what revision your working fileis based on (thisis called the file's working revision), and

» atimestamp recording when the local copy was last updated by the repository.

Given this information, by talking to the repository, Subversion can tell which of the following four
statesaworking fileisin:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to the reposit-
ory since its working revision. An svn commit of the file will do nothing, and an svn update of the file will do
nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been committed to the re-
pository since its base revision. There are local changes that have not been committed to the repository, thus an
svn commit of the file will succeed in publishing your changes, and an svn update of the file will do nothing.

17

Basic Concepts

Unchanged, and out-of-date
The file has not been changed in the working directory, but it has been changed in the repository. The file
should eventually be updated, to make it current with the public revision. An svn commit of the file will do
nothing, and an svn update of the file will fold the latest changes into your working copy.

Locally changed, and out-of-date
The file has been changed both in the working directory, and in the repository. An svn commit of the file will
fail with an “out-of-date” error. The file should be updated first; an svn update command will attempt to merge
the public changes with the local changes. If Subversion can't complete the merge in a plausible way automatic-
ally, it leavesit to the user to resolve the conflict.

This may sound like a lot to keep track of, but the svn status command will show you the state of any
item in your working copy. For more information on that command, see the section called “svn status’.

Mixed Revision Working Copies

Asagenera principle, Subversion tries to be as flexible as possible. One specia kind of flexibility isthe
ability to have a working copy containing files and directories with a mix of different working revision
numbers. Unfortunately, this flexibility tends to confuse a number of new users. If the earlier example
showing mixed revisions perplexed you, here's a primer on both why the feature exists and how to make
use of it.

Updates and Commits are Separate

One of the fundamental rules of Subversion isthat a*“push” action does not cause a*“pull”, nor the other
way around. Just because you're ready to submit new changes to the repository doesn't mean you're
ready to receive changes from other people. And if you have new changes still in progress, then svn up-
date should gracefully merge repository changes into your own, rather than forcing you to publish them.

The main side-effect of this rule is that it means a working copy has to do extra bookkeeping to track
mixed revisions, and be tolerant of the mixture as well. It's made more complicated by the fact that dir-
ectories themselves are versioned.

For example, suppose you have aworking copy entirely at revision 10. You edit thefilef 0oo. ht M and
then perform an svn commit, which creates revision 15 in the repository. After the commit succeeds,
many new users would expect the working copy to be entirely at revision 15, but that's not the case! Any
number of changes might have happened in the repository between revisions 10 and 15. The client
knows nothing of those changes in the repository, since you haven't yet run svn update, and svn com-
mit doesn't pull down new changes. If, on the other hand, svn commit were to automatically download
the newest changes, then it would be possible to set the entire working copy to revision 15—but then
we'd be breaking the fundamental rule of “push” and “pull” remaining separate actions. Therefore the
only safe thing the Subversion client can do is mark the one file—f 00. ht ml —as being at revision 15.
The rest of the working copy remains at revision 10. Only by running svn update can the latest changes
be downloaded, and the whole working copy be marked as revision 15.

Mixed revisions are normal

Thefact is, every time you run svn commit, your working copy ends up with some mixture of revisions.
The things you just committed are marked as having larger working revisions than everything else. After
several commits (with no updates in-between) your working copy will contain a whole mixture of revi-
sions. Even if you're the only person using the repository, you will still see this phenomenon. To exam-
ine your mixture of working revisions, use the svn status --verbose command (see the section called
“svn status’ for moreinformation.)

Often, new users are completely unaware that their working copy contains mixed revisions. This can be
confusing, because many client commands are sensitive to the working revision of the item they're ex-

18

Basic Concepts

amining. For example, the svn log command is used to display the history of changes to afile or direct-
ory (see the section called “svn log”). When the user invokes this command on a working copy object,
they expect to see the entire history of the object. But if the object's working revision is quite old (often
because svn update hasn't been run in along time), then the history of the older version of the object is
shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly “backdate’
portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 3. Perhaps
you'd like to test an earlier version of a sub-module contained in a subdirectory, or perhaps you'd like to
figure out when a bug first came into existence in a specific file. Thisis the “time machine” aspect of a
version control system — the feature which allows you to move any portion of your working copy for-
ward and backward in history.

Mixed revisions have limitations
However you make use of mixed revisionsin your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of afile or directory which isn't fully up-to-date. If a newer ver-
sion of the item existsin the repository, your attempt to delete will be rejected, to prevent you from acci-
dentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up-to-date. You'll learn
about attaching “properties’ to items in Chapter 6. A directory's working revision defines a specific set
of entries and properties, and thus committing a property change to an out-of-date directory may destroy
properties you've not yet seen.

Summary

We've covered a number of fundamental Subversion conceptsin this chapter:
» Weveintroduced the notions of the central repository, the client working copy, and the array of re-
pository revision trees.

* We've seen some simple examples of how two collaborators can use Subversion to publish and re-
ceive changes from one another, using the “copy-modify-merge” model.

» Wevetaked ahit about the way Subversion tracks and manages information in aworking copy.
At this point, you should have a good idea of how Subversion works in the most general sense. Armed

with this knowledge, you should now be ready to jump into the next chapter, which is a detailed tour of
Subversion's commands and features.

19

Chapter 3. Guided Tour

Now we will go into the details of using Subversion. By the time you reach the end of this chapter, you
will be able to perform almost all the tasks you need to use Subversion in a normal day's work. You'll
start with an initial checkout of your code, and walk through making changes and examining those
changes. You'll also see how to bring changes made by others into your working copy, examine them,
and work through any conflicts that might arise.

Note that this chapter is not meant to be an exhaustive list of all Subversion's commands—rather, it's a
conversational introduction to the most common Subversion tasks you'll encounter. This chapter as-
sumes that you've read and understood Chapter 2, Basic Concepts and are familiar with the general mod-
el of Subversion. For a complete reference of all commands, see Chapter 9, Subversion Complete Refer-
ence.

Help!

Before reading on, here is the most important command you'll ever need when using Subversion: svn
help. The Subversion command-line client is self-documenting—at any time, a quick svn help
<subcommand> will describe the syntax, switches, and behavior of the subcommand.

Import

You use svn import to import a new project into a Subversion repository. While this is most likely the
very first thing you will do when you set up your Subversion server, it's not something that happens very
often. For a detailed description of import, see the section called “svn import” later in this chapter.

Revisions: Numbers, Keywords, and Dates, Oh

My!

Before we go on, you should know a bit about how to identify a particular revision in your repository.
Asyou learned in the section called “Revisions’, arevision is a“snapshot” of the repository at a particu-
lar moment in time. As you continue to commit and grow your repository, you need a mechanism for
identifying these snapshots.

You specify these revisions by using the - - r evi si on (- r) switch plus the revision you want (svn -
-revision REV) or you can specify a range by separating two revisions with a colon (-r

do that later in this chapter), you can refer to it as“3".

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead
of integer arguments to the - - r evi si on switch, and are resolved into specific revision numbers by
Subversion:

O

$ svn update --revision PREV foo.c
rewi nds the | ast change on foo.c
(foo.c's working revision is decreased)

These keywords allow you to perform many common (and helpful) operations without having to look up
specific revision numbers or remember the exact revision of your working copy.

Revision Dates

Anywhere that you specify a revision number or revision keyword, you can also specify a date inside

$ svn log --revision {2002-11-20}:{2002-11- 29}

Aswe pointed out, you can also mix dates and revisions:
$ svn log --revision {2002-11-20}: 4040

Users should be aware of a subtlety that can become quite a stumbling-block when dealing with dates in
Subversion. Since the timestamp of a revision is stored as a property of the revision—an unversioned,
modifiable property—revision timestamps can be changed to represent complete falsifications of true
chronology, or even removed atogether. This will wreak havoc on the internal date-to-revision conver-
sion that Subversion performs.

Initial Checkout

Most of the time, you will start using a Subversion repository by doing a checkout of your project.
Checking out a repository creates a copy of it on your local machine. This copy contains the HEAD
(latest revision) of the Subversion repository that you specify on the command line:

$ svn checkout http://svn.collab.net/repos/svn/trunk
A trunk/subversion. dsw

Guided Tour

the repository. While these aren't strict requirements like the syntax described above, they help to organize
frequently performed tasks. The/ t r unk part of URLs you'll find throughout this book is one of these con-
ventions; we'll talk alot more about it and related recommendations in Chapter 4, Branching and Merging.

Although the above example checks out the trunk directory, you can just as easily check out any deep
subdirectory of arepository by specifying the subdirectory in the checkout URL :

$ svn checkout http://svn.collab. net/repos/svn/trunk/doc/book/tools
A tools/readne-dblite. htnl
A tool s/fo-styl esheet. xsl
A tool s/svnbook. el

A tools/dtd

A tools/dtd/dblite.dtd

éﬁecked out revision 2499.

Since Subversion uses a “copy-modify-merge” model instead of “lock-modify-unlock” (see Chapter 2,
Basic Concepts), you're already able to start making changes to the files and directories in your working
copy. Your working copy is just like any other collection of files and directories on your system. You
can edit and change them, move them around, you can even delete the entire working copy and forget
about it.

Note

Q/ While your working copy is “just like any other collection of files and directories on your
system”, you need to let Subversion know if you're going to be rearranging anything inside
of your working copy. If you want to copy or move an item in aworking copy, you should
use svn copy or svn move instead of the copy and move commands provided by your op-
erating system. We'll talk more about them later in this chapter.

Unless you're ready to commit anew file or directory, or changes to existing ones, there's no need to fur-
ther notify the Subversion server that you've done anything.

What'swith the. svn directory?

Every directory in aworking copy contains an administrative area, a subdirectory named . svn. Usually, dir-
ectory listing commands won't show this subdirectory, but it is nevertheless an important directory. Whatever
you do, don't delete or change anything in the administrative areal Subversion depends on it to manage your
working copy.

While you can certainly check out a working copy with the URL of the repository as the only argument,
you can also specify a directory after your repository URL. This places your working copy in the new
directory that you name. For example:

$ svn checkout http://svn.collab. net/repos/svn/trunk subv
A subv/subversion. dsw

A subv/svn_check. dsp

A subv/ COW TTERS

A subv/configure.in

A subv/ | DEAS

éﬁecked out revision 2499.

24

Guided Tour

That will place your working copy in a directory named subv instead of a directory named t r unk as
we did previously.

Basic Work Cycle

Subversion has numerous features, options, bells and whistles, but on a day-to-day basis, odds are that
you will only use a few of them. In this section well run through the most common things that you
might find yourself doing with Subversion in the course of a day's work.

The typical work cycle looks like this:

» Update your working copy
e svnupdate

» Make changes

* svnadd

* svndelete
e svn copy
e svn move

» Examine your changes
* svn status
* svndiff
s svnrevert
» Maerge others' changes into your working copy
e svnupdate
* svnresolved
» Commit your changes

e svn commit

Update Your Working Copy

When working on a project with ateam, you'll want to update your working copy to receive any changes
made since your last update by other developers on the project. Use svn update to bring your working
copy into sync with the latest revision in the repository.

$ svn update

U foo.c

U bar.c

Updated to revision 2.

25

Guided Tour

In this case, someone else checked in modifications to both f 00. ¢ and bar . ¢ since the last time you
updated, and Subversion has updated your working copy to include those changes.

Let's examine the output of svn update a bit more. When the server sends changes to your working
copy, a letter code is displayed next to each item to let you know what actions Subversion performed to
bring your working copy up-to-date:

U foo
Filef oo was Updated (received changes from the server).

A foo
File or directory f oo was Added to your working copy.

D foo
File or directory f oo was Deleted from your working copy.

R foo
File or directory f oo was Replaced in your working copy; that is, f 00 was deleted, and a new item with the
same name was added. While they may have the same name, the repository considers them to be distinct objects
with distinct histories.

G foo
File f oo received new changes from the repository, but your local copy of the file had your modifications.
Either the changes did not intersect, or the changes were exactly the same as your local modifications, so Sub-
version has successfully merGed the repository's changes into the file without a problem.

C foo
File f oo received Conflicting changes from the server. The changes from the server directly overlap your own
changes to the file. No need to panic, though. This overlap needs to be resolved by a human (you); we discuss
this situation later in this chapter.

Make Changes to Your Working Copy

Now you can get to work and make changes in your working copy. It's usually most convenient to de-
cide on a particular change (or set of changes) to make, such as writing a new feature, fixing a bug, etc.
The Subversion commands that you will use here are svn add, svn delete, svn copy, and svn move.
However, if you are merely editing files that are already in Subversion, you may not need to use any of
these commands until you commit. Changes you can make to your working copy:

File changes
Thisisthe simplest sort of change. Y ou don't need to tell Subversion that you intend to change a file; just make
your changes. Subversion will be able to automatically detect which files have been changed.

Tree changes
You can ask Subversion to “mark” files and directories for scheduled removal, addition, copying, or moving.
While these changes may take place immediately in your working copy, no additions or removals will happen in
the repository until you commit them.

To make file changes, use your text editor, word processor, graphics program, or whatever tool you
would normally use. Subversion handles binary files just as easily as it handles text files—and just as ef-
ficiently too.

26

Guided Tour

tionally, thisis a good opportunity to review and scrutinize changes before publishing them. Y ou can see
exactly what changes you've made by using svn status, svn diff, and svn revert. You will usualy use
the first two commands to find out what files have changed in your working copy, and then perhaps the
third to revert some (or all) of those changes.

Subversion has been optimized to help you with this task, and is able to do many things without commu-
nicating with the repository. In particular, your working copy contains a secret cached “ pristing” copy of
each version controlled file within the . svn area. Because of this, Subversion can quickly show you
how your working files have changed, or even alow you to undo your changes without contacting the
repository.

svn status

You'l probably use the svn status command more than any other Subversion command.

CVSUsers: Hold That Update!

Y ou're probably used to using cvs update to see what changes you've made to your working copy. svn status
will give you all the information you need regarding what has changed in your working copy—without ac-
cessing the repository or potentially incorporating new changes published by other users.

In Subversion, update does just that—it updates your working copy with any changes committed to the re-
pository since the last time you've updated your working copy. Y ou'll have to break the habit of using the up-
date command to see what local modifications you've made.

If you run svn status at the top of your working copy with no arguments, it will detect all file and tree
changes you've made. Below are examples of the different status codes that svn status can return. (Note
that the text following # is not actually printed by svn status.)

L sone_dir # svn left a lock in the .svn area of sone_dir
M bar. c # the content in bar.c has l|ocal nodifications
M baz. c # baz.c has property but no content nodifications
X 3rd_party # dir is part of an externals definition
? foo.o # svn doesn't manage fo0o0.0
! some_dir # svn manages this, but it's nissing or inconplete
~ qux # versioned as file/dir/link, but type has changed
I .screenrc # svn doesn't manage this, and is set to ignore it
A + noved _dir # added with history of where it canme from
M + noved_di r/ READVE # added with history and has | ocal nodifications
D stuff/fish.c # file is schedul ed for del etion
A stuff/loot/bloo.h # file is scheduled for addition
C stuff/loot/lunp.c # file has textual conflicts from an update
C stuff/loot/glub.c # file has property conflicts froman update
R Xyz.c # file is schedul ed for repl acenent
S stuff/squawk # file or dir has been switched to a branch
K dog.j pg # file is |l ocked locally; |ock-token present
O cat.jpg # file is locked in the repository by other user
B bird.|pg # file is locked locally, but |Iock has been broken
T fish.jpg # file is locked locally, but |ock has been stolen

In this output format svn status prints five columns of characters, followed by several whitespace char-
acters, followed by afile or directory name. The first column tells the status of afile or directory and/or
its contents. The codes printed here are:

28

Guided Tour

Aitem
Thefile, directory, or symbolic link i t emhas been scheduled for addition into the repository.

Citem
Thefilei t emisin astate of conflict. That is, changes received from the server during an update overlap with
local changes that you have in your working copy. You must resolve this conflict before committing your
changes to the repository.

Ditem
Thefile, directory, or symbolic link i t emhas been scheduled for deletion from the repository.

Mitem
The contents of thefilei t emhave been modified.

Ritem
The file, directory, or symbolic link i t emhas been scheduled to replace i t emin the repository. This means
that the object isfirst deleted, then another object of the same nameis added, all within asingle revision.

X item
The directory i t emis unversioned, but is related to a Subversion externals definition. To find out more about
externals definitions, see the section called “ Externals Definitions’.

? item
The file, directory, or symbolic link i t emis not under version control. You can silence the question marks by
either passing the - - qui et (- q) switch to svn status, or by setting the svn: i gnor e property on the parent
directory. For more information on ignored files, see the section called “svn: i gnore”.

I item
Thefile, directory, or symbolic link i t emis under version control but is missing or somehow incomplete. The
item can be missing if it's removed using a non-Subversion command. In the case of a directory, it can be in-
complete if you happened to interrupt a checkout or update. A quick svn update will refetch the file or direct-
ory from the repository, or svn revert file will restore amissing file.

~item
The file, directory, or symbolic link i t emisin the repository as one kind of object, but what's actually in your
working copy is some other kind. For example, Subversion might have afile in the repository, but you removed
the file and created a directory in its place, without using the svn delete or svn add command.

| item
The file, directory, or symbolic link i t emis not under version control, and Subversion is configured to ignore
it during svn add, svn import and svn status operations. For more information on ignored files, see the section
caled “svn: i gnor e”. Note that this symbol only shows up if you pass the - - no- i gnor e option to svn
status—otherwise the file would be ignored and not listed at all!

The second column tells the status of a file or directory's properties (see the section called “Properties’
for more information on properties). If an Mappears in the second column, then the properties have been
modified, otherwise awhitespace will be printed.

The third column will only show whitespace or an L which means that Subversion has locked the direct-
ory's. svn working area. You will see an L if you run svn statusin adirectory where an svn commit is
in progress—perhaps when you are editing the log message. If Subversion is not running, then presum-
ably Subversion was interrupted and the lock needs to be cleaned up by running svn cleanup (more
about that |ater in this chapter).

The fourth column will only show whitespace or a + which means that the file or directory is scheduled
to be added or modified with additional attached history. This typically happens when you svn move or
svn copy afileor directory. If yousee A +, this means the item is scheduled for addition-with-history.

29

Guided Tour

It could be afile, or the root of a copied directory. + means the item is part of a subtree scheduled for
addition-with-history, i.e. some parent got copied, and it's just coming along for theride. M+ means
the item is part of a subtree scheduled for addition-with-history, and it has local modifications. When
you commit, first the parent will be added-with-history (copied), which means this file will automatic-
ally exist in the copy. Then the local modifications will be uploaded into the copy.

The fifth column will only show whitespace or an S. This signifies that the file or directory has been
switched from the path of the rest of the working copy (using svn switch) to a branch.

The sixth column shows information about locks, which is further explained in the section called
“Locking”. (These are not the same locks as the ones indicated by an L in the third column; see Three
meanings of “lock”.)

If you pass a specific path to svn status, it gives you information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a - - ver bose (- v) switch, which will show you the status of every item in your
working copy, even if it has not been changed:

$ svn status --verbose

M 44 23 sally READVE
44 30 sally | NSTALL
M 44 20 harry bar. c
44 18 ira stuff
44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
44 21 sally stuff/things
0 ? ? stuff/things/bloo.h
44 36 harry stuf f/things/gloo.c

Thisisthe “long form” output of svn status. The first column remains the same, but the second column
shows the working-revision of the item. The third and fourth columns show the revision in which the
item last changed, and who changed it.

None of the above invocationsto svn status contact the repository, they work only locally by comparing
the metadata in the . svn directory with the working copy. Finaly, thereisthe - - show updat es (-
u) switch, which contacts the repository and adds information about things that are out-of-date:

$ svn status --show updates --verbose
M * 44 23 sal ly READVE
M 44 20 harry bar. c
* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuf f/things/bloo.h
St at us agai nst revi sion: 46

Notice the two asterisks: if you were to run svn update at this point, you would receive changes to
README and t r out . c. Thistells you some very useful information—you'll need to update and get the
server changes on README before you commit, or the repository will reject your commit for being out-
of-date. (More on this subject later.)

svn diff

30

2subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output in a different format, specify an
external diff program using - - di f f - cnd and pass any flags you'd like to it using the - - ext ensi ons switch. For example, to see local differ-
encesin filef 0o. ¢

Guided Tour

svn revert

Now suppose you see the above diff output, and realize that your changes to README are a mistake;
perhaps you accidentally typed that text into the wrong file in your editor.

Thisis aperfect opportunity to use svn revert.

$ svn revert README
Reverted ' READVE'

Subversion reverts the file to its pre-modified state by overwriting it with the cached “pristing” copy
from the . svn area. But also note that svn revert can undo any scheduled operations—for example,
you might decide that you don't want to add a new file after all:

$ svn status foo
? f oo

$ svn add foo
A foo

$ svn revert foo
Reverted ' foo'

$ svn status foo
f oo

2
: Note
/ svn revert | TEM has exactly the same effect as deleting | TEMfrom your working copy
and then running svn update -r BASE | TEM However, if you're reverting afile, svn re-
vert has one very noticeable difference—it doesn't have to communicate with the reposit-
ory to restore your file.

Or perhaps you mistakenly removed afile from version control:
$ svn status READMVE

README

$ svn del et e README
D READIVE

$ svn revert README
Reverted ' READVE

$ svn status READVE
READNVE

L ook Ma! No Network!

All three of these commands (svn status, svn diff, and svn revert) can be used without any network access.
This makes it easy to manage your changes-in-progress when you are somewhere without a network connec-
tion, such astravelling on an airplane, riding a commuter train or hacking on the beach.

32

Subversion does this by keeping private caches of pristine versions of each versioned file inside of the . svn
administrative areas. This allows Subversion to report—and revert—Iocal modifications to those files without
network access. This cache (called the “text-base”) also alows Subversion to send the user's local modifica
tions during a commit to the server as a compressed delta (or “difference”) against the pristine version. Hav-
ing this cache is a tremendous benefit—even if you have afast net connection, it's much faster to send only a
file's changes rather than the whole file to the server. At first glance, this might not seem that important, but
imagine the repercussions if you try to commit a one line change to a 400MB file and have to send the whole
file to the server!

Resolve Conflicts (Merging Others' Changes)

We've already seen how svn status -u can predict conflicts. Suppose you run svn update and some in-
teresting things occur:

$ svn update

U | NSTALL
G README
C bar.c

Updated to revision 46.

The U and G codes are no cause for concern; those files cleanly absorbed changes from the repository.
The files marked with U contained no local changes but were Updated with changes from the repository.
The G stands for merGed, which means that the file had local changes to begin with, but the changes
coming from the repository didn't overlap with the local changes.

But the C stands for conflict. This means that the changes from the server overlapped with your own,
and now you have to manually choose between them.

Whenever a conflict occurs, three things typically occur to assist you in noticing and resolving that con-

flict:

» Subversion prints a C during the update, and remembers that the fileisin a state of conflict.

» If Subversion considers the file to be of a mergeable type, it places conflict markers—special strings
of text which delimit the “sides” of the conflict—into the file to visibly demonstrate the overlapping
areas. (Subversion uses the svn: m me- t ype property to decide if afile is capable of contextual,
line-based merging. Seethe section called “svn: m ne-t ype” tolearn more.)

» For every conflicted file, Subversion places up to three extra unversioned filesin your working copy:

filenane. m ne

Guided Tour

$ cat sandw ch. t xt
Top piece of bread
Mayonnai se

Lettuce

Tomat o

Provol one
<LK . M he

Sal am

Mort adel | a
Prosciutto

Sauer kr aut

Gilled Chicken
>S>>>>>> 12

Creole Miustard

Bott om pi ece of bread

The strings of less-than signs, equal signs, and greater-than signs are conflict markers, and are not part
of the actual data in conflict. You generally want to ensure that those are removed from the file before
your next commit. The text between the first two sets of markers is composed of the changes you made
in the conflicting area:

<<<<<<< . m ne
Sal am

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
>S>>>>>> 12

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be aw-
fully surprised when the sandwich arrives and it's not what she wanted. So this is where you pick up the
phone or walk across the office and explain to Sally that you can't get sauerkraut from an Italian deli
Once you've agreed on the changes you will check in, edit your file and remove the conflict markers.

Top piece of bread
Mayonnai se

Lettuce

Tomat o

Pr ovol one

Sal ami

Mort adel | a

Prosciutto

Creole Mustard

Bott om pi ece of bread

Now run svn resolved, and you're ready to commit your changes:

4And if you ask them for it, they may very well ride you out of town on arail.

35

$ svn resol ved sandwi ch. t xt
$ svn commit -m " Go ahead and use ny sandwi ch, discarding Sally's edits.

Remember, if you ever get confused while editing the conflicted file, you can always consult the three
files that Subversion creates for you in your working copy—including your file as it was before you up-
dated. Y ou can even use a third-party interactive merging tool to examine those three files.

Copying a File Onto Your Working File

If you get a conflict and decide that you want to throw out your changes, you can merely copy one of the
temporary files created by Subversion over the file in your working copy:

$ svn update

C sandwi ch. t xt

Updated to revision 2.

$ |s sandwi ch. *

sandwi ch.txt sandwich.txt.mne sandwich.txt.r2 sandwich.txt.rl
$ cp sandwi ch. txt.r2 sandwi ch. t xt

$ svn resol ved sandwi ch. t xt

Punting: Using svn revert

If you get a conflict, and upon examination decide that you want to throw out your changes and start
your edits again, just revert your changes:

$ svn revert sandwi ch. txt
Reverted ' sandw ch. t xt'

$ |I's sandwi ch. *

sandw ch. t xt

Note that when you revert a conflicted file, you don't have to run svn resolved.

Now you're ready to check in your changes. Note that svn resolved

Guided Tour

However, if you've been composing your log message as you work, you may want to tell Subversion to
get the message from afile by passing the filename with the- - f i | e switch:

$ svn commit --file | ognsg
Sendi ng sandwi ch. t xt
Transmtting file data .
Committed revision 4.

If you fail to specify either the - - nessage or - -fi | e switch, then Subversion will automatically
launch your favorite editor (seethe edi t or - cmd section in the section called “ Config”) for composing

alog message.

o .

_/I If you're in your editor writing a commit message and decide that you want to cancel your
commit, you can just quit your editor without saving changes. If you've aready saved your
commit message, simply delete the text and save again.

$ svn commit
Waiting for Enacs...Done

Log nmessage unchanged or not specified
a)bort, c)ontinue, e)dit

a

$

The repository doesn't know or care if your changes make any sense as a whole; it only checks to make
sure that nobody else has changed any of the same files that you did when you weren't looking. If some-
body has done that, the entire commit will fail with a message informing you that one or more of your
filesis out-of-date:

$ svn conmit --message "Add another rule"

Sendi ng rul es.txt

svn: Commit failed (details follow:

svn: Qut of date: 'rules.txt' in transaction 'g'

At this point, you need to run svn update, deal with any merges or conflicts that result, and attempt your
commit again.

That covers the basic work cycle for using Subversion. There are many other features in Subversion that
you can use to manage your repository and working copy, but you can get by quite easily using only the
commands that we've discussed so far in this chapter.

Examining History

As we mentioned earlier, the repository is like a time machine. It keeps a record of every change ever
committed, and allows you to explore this history by examining previous versions of files and director-
ies as well as the metadata that accompanies them. With a single Subversion command, you can check
out the repository (or restore an existing working copy) exactly asit was at any date or revision number
in the past. However, sometimes you just want to peer into the past instead of going into the past.

There are several commands that can provide you with historical datafrom the repository:

37

svn log
Shows you broad information: log messages with date and author information attached to revisions, and which
paths changed in each revision.

svn diff
Shows you the specific details of how afile changed over time.

svn cat
Thisisused to retrieve any file asit existed in a particular revision number and display it on your screen.

svn list
Displaysthefilesin adirectory for any given revision.

svn log

To find information about the history of a file or directory, use the svn log command. svn log will
provide you with a record of who made changes to afile or directory, at what revision it changed, the
time and date of that revision, and, if it was provided, the log message that accompanied the commit.

$ svn log

If you want even more information about a file or directory, svn log also takes a - - ver bose (- v)
switch. Because Subversion allows you to move and copy files and directories, it isimportant to be able
to track path changes in the filesystem, so in verbose mode, svn log will include alist of changed paths
inarevision in its output:

| sally | 2002-07-14 08:15:29 -0500 | 1 line
Changed pat hs:
M /trunk/ code/ f oo. c
M /trunk/ code/ bar. h
A /trunk/ code/ doc/ READVE

svn log also takesa- - qui et (-q

Guided Tour

“pristine” copiesinthe. svn area:

$ svn diff
| ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@a-1,4 +1,5 @@

Be kind to others

Freedom = Responsibility

Everyt hing i n noderation
-Chew with your nouth open
+Chew wi th your nouth cl osed
;Li sten when others are speaking

Comparing Working Copy to Repository

If asingle--revision (-r) number is passed, then your working copy is compared to the specified
revision in the repository.

$ svn diff --revision 3 rules.txt
| ndex: rul es. txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@a-1,4 +1,5 @@

Be kind to others

Freedom = Responsibility

Everyt hing i n noderation
-Chew with your nouth open
+Chew wi th your nouth cl osed
;Li sten when others are speaking

Comparing Repository to Repository

If two revision numbers, separated by a colon, are passed via - - r evi si on (- r), then the two revi-
sions are directly compared.

$ svn diff --revision 2:3 rules. txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@a@a-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everyt hing i n noderation
$Chewwith your nouth open

Not only can you use svn diff to compare files in your working copy to the repository, but if you supply
a URL argument, you can examine the differences between items in the repository without even having
aworking copy. Thisis especially useful if you wish to inspect changes in a file when you don't have a
working copy on your local machine:

40

Guided Tour

$ svn diff --revision 4:5 http://svn.red-bean. confrepos/exanpl e/trunk/text/rules.t

svn cat

If you want to examine an earlier version of afile and not necessarily the differences between two files,
you can use svn cat:

$ svn cat --revision 2 rules.txt
Be kind to others

Freedom = Chocol ate | ce Cream
Everyt hing i n noderation

Chew with your nouth open

Y ou can aso redirect the output directly into afile:

$ svn cat --revision 2 rules.txt > rules.txt.v2

Y ou're probably wondering why we don't just use svn update --revision to update the file to the older
revision. There are afew reasons why we might prefer to use svn cat.

First, you may want to see the differences between two revisions of afile using an external diff program
(perhaps a graphical one, or perhaps your file isin such a format that the output of unified diff is non-
sensical). In this case, you'll need to grab a copy of the old revision, redirect it to afile, and pass both
that and the file in your working copy to your external diff program.

Sometimesit's easier to look at an older version of afilein its entirety as opposed to just the differences
between it and another revision.

svn list

The svn list command shows you what files are in a repository directory without actually downloading
the files to your local machine:

$ svn list http://svn.collab.net/repos/svn
READIVE

branches/

clients/

t ags/

t runk/

If you want amore detailed listing, passthe - - ver bose (- v) flag to get output like this:

$ svn list --verbose http://svn.collab.net/repos/svn

2755 harry 1331 Jul 28 02: 07 README
2773 sally Jul 29 15:07 branches/
2769 sally Jul 29 12:07 clients/
2698 harry Jul 24 18:07 tags/

41

2785 sally Jul 29 19: 07 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified
it, thesizeif itisafile, the date it was last modified, and the item's name.

A Final Word on History

In addition to all of the above commands, you can use svn update and svn checkout with the -
-revi si on switch to take an entire working copy “back in time’ 5

$ svn checkout --revision 1729 # Checks out a new working copy at ri1729

élsvn update --revision 1729 # Updates an existing working copy to ri1729

Other Useful Commands

While not as frequently used as the commands previously discussed in this chapter, you will occasion-
ally need these commands.

svn cleanup

When Subversion modifies your working copy (or any information within . svn), it tries to do so as

5See? We told you that Subversion was a time machine.

svn import

The svn import command is a quick way to copy an unversioned tree of filesinto a repository, creating
intermediate directories as necessary.

$ svnadmi n create /usr/local/svn/ new epos
$ svn inmport nytree file:///usr/local/svn/new epos/sone/project \
-m"Initial inport"

Addi ng nytreel/ foo.c
Addi ng mytreel/ bar.c
Addi ng nyt ree/ subdir
Addi ng nmyt r ee/ subdi r/ quux. h

Committed revision 1.

The previous example copied the contents of directory myt r ee under the directory sone/ pr oj ect in
the repository:

$ svn list file:///usr/local/svn/ new epos/sone/ project
bar. c

foo.c

subdir/

Note that after the import is finished, the original tree is not converted into a working copy. To start
working, you still need to svn checkout afresh working copy of the tree.

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with
branching and merging (see Chapter 4, Branching and Merging) and properties (see the section called
“Properties’). However, you may want to take a moment to skim through Chapter 9, Subversion Com-
plete Reference

Chapter 4. Branching and Merging

Branching, tagging, and merging are concepts common to aimost al version control systems. If you're
not familiar with these ideas, we provide a good introduction in this chapter. If you are familiar, then
hopefully you'll find it interesting to see how Subversion implements these ideas.

Branching is a fundamental part of version control. If you're going to alow Subversion to manage your
data, then thisis afeature you'll eventually come to depend on. This chapter assumes that you're already
familiar with Subversion's basic concepts (Chapter 2, Basic Concepts).

What's a Branch?

Suppose it's your job to maintain a document for a division in your company, a handbook of some sort.
One day a different division asks you for the same handbook, but with a few parts “tweaked” for them,
since they do things dightly differently.

What do you do in this situation? Y ou do the obvious thing: you make a second copy of your document,
and begin maintaining the two copies separately. As each department asks you to make small changes,
you incorporate them into one copy or the other.

Y ou often want to make the same change to both copies. For example, if you discover atypo in the first
copy, it's very likely that the same typo exists in the second copy. The two documents are almost the
same, after all; they only differ in small, specific ways.

Thisisthe basic concept of a branch—namely, aline of development that exists independently of anoth-
er line, yet still shares a common history if you look far enough back in time. A branch always begins

life as a copy of something, and moves on from there, generating its own history (see Figure 4.1,
“Branches of development”).

Figure 4.1. Branches of development

3rd branch

15t branch

5 IS e A e F— —

——re——— R S

Subversion has commands to help you maintain parallel branches of your files and directories. It allows
you to create branches by copying your data, and remembers that the copies are related to one another. It
also helps you duplicate changes from one branch to another. Finaly, it can make portions of your
working copy reflect different branches, so that you can “mix and match” different lines of development
in your daily work.

Using Branches

Branching and Merging

At this point, you should understand how each commit creates an entire new filesystem tree (called a
“revision”) in the repository. If not, go back and read about revisionsin the section called “Revisions’.

For this chapter, we'll go back to the same example from Chapter 2. Remember that you and your col-
laborator, Sally, are sharing a repository that contains two projects, pai nt and cal c¢. Notice that in
Figure 4.2, “Starting repository layout”, however, each project directory now contains subdirectories
namedt r unk and br anches. The reason for thiswill soon become clear.

Figure4.2. Starting repository layout

(]

= calc —
—
P —
[b
*=| trunk -
[b
S
*| branches
= paint I —
—
P N
[
= trunk >
[L
P T —

= branches

As before, assume that Sally and you both have working copies of the “calc” project. Specificaly, you
each have aworking copy of / cal ¢/ t r unk. All the files for the project are in this subdirectory rather
than in / cal c itself, because your team has decided that / cal ¢/ t r unk is where the “main line” of
development is going to take place.

Let's say that you've been given the task of performing aradical reorganization of the project. It will take
along time to write, and will affect al the filesin the project. The problem here is that you don't want to
interfere with Sally, who is in the process of fixing small bugs here and there. She's depending on the
fact that the latest version of the project (in/ cal ¢/t r unk) is always usable. If you start committing
your changes bit-by-bit, you'll surely break things for Sally.

One strategy is to crawl into a hole: you and Sally can stop sharing information for a week or two. That
is, start gutting and reorganizing all the files in your working copy, but don't commit or update until
you're completely finished with the task. There are a number of problems with this, though. First, it's not
very safe. Most people like to save their work to the repository frequently, should something bad acci-
dentally happen to their working copy. Second, it's not very flexible. If you do your work on different
computers (perhaps you have a working copy of / cal ¢/t runk on two different machines), you'll
need to manually copy your changes back and forth, or just do all the work on a single computer. By that

45

Branching and Merging

same token, it's difficult to share your changes-in-progress with anyone else. A common software devel-
opment “best practice” isto alow your peers to review your work as you go. If nobody sees your inter-
mediate commits, you lose potential feedback. Finally, when you're finished with all your changes, you
might find it very difficult to re-merge your final work with the rest of the company's main body of
code. Sally (or others) may have made many other changes in the repository that are difficult to incor-
porate into your working copy—especialy if you run svn update after weeks of isolation.

The better solution is to create your own branch, or line of development, in the repository. This allows
you to save your half-broken work frequently without interfering with others, yet you can still select-
ively share information with your collaborators. You'll see exactly how this works later on.

Creating a Branch

Creating a branch is very simple—you make a copy of the project in the repository using the svn copy
command. Subversion is not only able to copy single files, but whole directories as well. In this case,
you want to make a copy of the/ cal ¢/ t r unk directory. Where should the new copy live? Wherever
you wish—it's a matter of project policy. Let's say that your team has a policy of creating branches in
the/ cal ¢/ br anches area of the repository, and you want to name your branch my- cal ¢c- br anch.
You'll want to create a new directory, / cal ¢/ br anches/ ny- cal c- br anch, which beginsits life
asacopy of / cal ¢/t runk.

There are two different ways to make a copy. We'll demonstrate the messy way first, just to make the
concept clear. To begin, check out aworking copy of the project's root directory, / cal c:

$ svn checkout http://svn.exanpl e.con repos/cal c bigw
A bigwe/trunk/

A bigwe/trunk/ Makefile

A bigwe/trunk/integer.c

A bigwe/trunk/button.c

A bi gwe/ branches/

Checked out revision 340.

Making a copy is now simply amatter of passing two working-copy paths to the svn copy command:

$ cd bigwe

$ svn copy trunk branches/ ny-cal c-branch
$ svn status

A + branches/ my- cal c- branch

In this case, the svn copy command recursively copiesthet r unk working directory to a new working
directory, br anches/ ny- cal c- br anch. As you can see from the svn status command, the new
directory is now scheduled for addition to the repository. But also notice the “+” sign next to the letter
A. This indicates that the scheduled addition is a copy of something, not something new. When you
commit your changes, Subversion will create / cal ¢/ br anches/ my- cal c- br anch in the reposit-
ory by copying/ cal c/ t r unk, rather than resending all of the working copy data over the network:

$ svn commit -m"Creating a private branch of /calc/trunk."
Addi ng branches/ ny-cal c- branch
Conmitted revision 341.

And now the easier method of creating a branch, which we should have told you about in the first place:
svn copy is able to operate directly on two URLS.

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \

46

Branching and Merging

http://svn. exanpl e. com repos/ cal c/ branches/ ny-cal c- branch \
-m"Creating a private branch of /calc/trunk."

Committed revision 341.

There's really no difference between these two methods. Both procedures create a new directory in revi-
sion 341, and the new directory is acopy of / cal ¢/t runk. Thisis shown in Figure 4.3, “Repository
with new copy”. Notice that the second method, however, performs an immediate commit. 1 lt's an easi-
er procedure, because it doesn't require you to check out a large mirror of the repository. In fact, this
technique doesn't even require you to have aworking copy at all.

Figure 4.3. Repository with new copy

= al
—
P —
[s
#| trunk -
[b
* branches o
my-ale § et
branch :
e
e
= et — _-—-—- = —
e o ST T e e S
Lo g Sk .__,.,,_._':_. S —— -
R e
e EL e T e
Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need to worry about the
repository growing huge—Subversion doesn't actually duplicate any data. Instead, it creates a new directory
entry that points to an existing tree. If you're a Unix user, this is the same concept as a hard-link. From there,
the copy is said to be “lazy”. That is, if you commit a change to one file within the copied directory, then only
that file changes—the rest of the files continue to exist as links to the origina filesin the original directory.

subversion does not support cross-repository copying. When using URLs with svn copy or svn move, you can only copy items within the same
repository.

47

Branching and Merging

Thisis why you'll often hear Subversion users talk about “cheap copies’. It doesn't matter how large the dir-
ectory is—it takes a very tiny, constant amount of time to make a copy of it. In fact, this feature is the basis of
how commits work in Subversion: each revision is a“cheap copy” of the previous revision, with a few items
lazily changed within. (To read more about this, visit Subversion's website and read about the “bubble up”
method in Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the user, who simply sees
copies of trees. The main point here is that copies are cheap, both in time and space. Make branches as often
as you want.

Working with Your Branch

Now that you've created a branch of the project, you can check out a new working copy to start using it:

$ svn checkout http://svn.exanpl e.com repos/cal ¢/ branches/ ny-cal c-branch
A ny-cal c-branch/ Makefile

A ny-cal c-branch/integer.c

A ny-cal c-branch/button.c

Checked out revision 341.

There's nothing specia about this working copy; it simply mirrors a different directory in the repository.

When you commit changes, however, Sally won't ever see them when she updates. Her working copy is

of / cal c/trunk. (Be sure to read the section called “Switching a Working Copy” later in this

chapter: the svn switch command is an alternate way of creating aworking copy of a branch.)

Let's pretend that a week goes by, and the following commits happen:

* You make achangeto/ cal c/ branches/ my- cal c- branch/ but t on. ¢, which creates revi-
sion 342.

* You make achangeto/ cal c/ branches/ ny-cal c- branch/i nt eger. c, which creates re-
vision 343.

» Sally makesachangeto/ cal ¢/ t runk/ i nt eger. c, which creates revision 344.

There are now two independent lines of development, shown in Figure 4.4, “ The branching of one file's
history”, happening oni nt eger . c.

Figure4.4. The branching of onefile's history

48

: 5 » my-calc-branch
integerc ri43
| cregled | (Changed changed ,
: : ——» trunk
o8 1303 341 rid4

n'.umé)

Branching and Merging

$ svn log --verbose integer.c

r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M/ cal c/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Cct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

ro8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: adding this file to the project.

Sally sees her own revision 344 change, but not the change you made in revision 343. As far as Subver-
sion is concerned, these two commits affected different files in different repository locations. However,
Subversion does show that the two files share a common history. Before the branch-copy was made in
revision 341, they used to be the samefile. That's why you and Sally both see the changes made in revi-
sions 303 and 98.

The Key Concepts Behind Branches

There are two important lessons that you should remember from this section.

1. Unlike many other version control systems, Subversion's branches exist as normal filesystem dir-
ectories in the repository, not in an extra dimension. These directories just happen to carry some
extra historical information.

2. Subversion has no internal concept of a branch—only copies. When you copy a directory, the res-
ulting directory is only a “branch” because you attach that meaning to it. Y ou may think of the dir-
ectory differently, or treat it differently, but to Subversion it's just an ordinary directory that hap-
pens to have been created by copying.

Copying Changes Between Branches

Now you and Sally are working on parallel branches of the project: you're working on a private branch,
and Sally isworking on the trunk, or main line of development.

For projects that have alarge number of contributors, it's common for most people to have working cop-
ies of the trunk. Whenever someone needs to make a long-running change that is likely to disrupt the
trunk, a standard procedure is to create a private branch and commit changes there until al the work is
complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very
easy to drift too far apart. Remember that one of the problems with the “crawl in ahole” strategy is that
by the time you're finished with your branch, it may be near-impossible to merge your changes back into

50

the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide which
changes are worth sharing; Subversion gives you the ability to selectively “copy” changes between
branches. And when you're completely finished with your branch, your entire set of branch changes can
be copied back into the trunk.

if (fseek(gzfile, -8, SEEK END)) ({
printf("error: fseek() returned non-zero\n");

The svn merge command is amost exactly the same. Instead of printing the differences to your termin-
al, however, it applies them directly to your working copy as local modifications:

$ svn nmerge -r 343:344 http://svn.exanpl e. com repos/cal c/trunk
U integer.c

$ svn status
M integer.c

The output of svn merge shows that your copy of i nt eger . ¢ was patched. It now contains Sally's
change—the change has been “ copied” from the trunk to your working copy of your private branch, and
now exists as alocal modification. At this point, it's up to you to review the local modification and make
sure it works correctly.

In another scenario, it's possible that things may not have gone so well, and that i nt eger . ¢ may have
entered a conflicted state. Y ou might need to resolve the conflict using standard procedures (see Chapter
3), or if you decide that the merge was a bad idea altogether, simply give up and svn revert the local
change.

But assuming that you've reviewed the merged change, you can svn commit the change as usual. At that
point, the change has been merged into your repository branch. In version control terminology, this act
of copying changes between branches is commonly called porting changes.

When you commit the local modification, make sure your log message mentions that you're porting a

Branching and Merging

change had, say, added a new directory, the output of svn diff wouldn't have mentioned it at all. svn diff only
outputs the limited patch-format, so there are some ideas it smply can't express. 2 The svn mer ge command,
however, can express changes in tree structure and properties by directly applying them to your working

copy.

A word of warning: while svn diff and svn merge are very similar in concept, they do have different
syntax in many cases. Be sure to read about them in Chapter 9 for details, or ask svn help. For example,
svn mer ge requires a working-copy path as atarget, i.e. a place where it should apply the tree-changes.
If the target isn't specified, it assumes you are trying to perform one of the following common opera-
tions:

1. Youwant to merge directory changesinto your current working directory.

2. You want to merge the changes in a specific file into afile by the same name which exists in your
current working directory.

If you are merging a directory and haven't specified a target path, svn merge assumes the first case
above and tries to apply the changes into your current directory. If you are merging afile, and that file
(or afile by the same name) exists in your current working directory, svn merge assumes the second
case and tries to apply the changesto alocal file with the same name.

If you want changes applied somewhere else, you'll need to say so. For example, if you're sitting in the
parent directory of your working copy, you'll have to specify the target directory to receive the changes:

$ svn merge -r 343:344 http://svn. exanpl e. com repos/cal c/trunk ny-cal c-branch
U ny-calc-branch/integer.c

The Key Concept Behind Merging

Y ou've now seen an example of the svn merge command, and you're about to see several more. If you're
feeling confused about exactly how merging works, you're not alone. Many users (especially those new
to version control) are initially perplexed about the proper syntax of the command, and about how and
when the feature should be used. But fear not, this command is actually much simpler than you think!
There'savery easy technique for understanding exactly how svn mer ge behaves.

The main source of confusion is the name of the command. The term “merge” somehow denotes that
branches are combined together, or that there's some sort of mysterious blending of data going on. That's
not the case. A better name for the command might have been svn diff-and-apply, because that's all that
happens:. two repository trees are compared, and the differences are applied to aworking copy.

The command takes three arguments:

1. Aninitia repository tree (often called the left side of the comparison),
2. A final repository tree (often called the right side of the comparison),
3. A working copy to accept the differences aslocal changes (often called the target of the merge).

Once these three arguments are specified, the two trees are compared, and the resulting differences are
applied to the target working copy as local modifications. When the command is done, the results are no

2In the future, the Subversion project plans to use (or invent) an expanded patch format that describes changesin tree structure and properties.

53

different than if you had hand-edited the files, or run various svn add or svn delete

Branching and Merging

In cases like this, people take comfort in being able to predict or examine merges before they happen.
One simple way to do that is to run svn diff with the same arguments you plan to pass to svn merge, as
we already showed in our first example of merging. Another method of previewing is to pass the -

- dry- r un option to the merge command:

$ svn nerge --dry-run -r 343:344 http://svn. exanpl e. coni repos/ cal c/trunk
U integer.c

$ svn status
nothing printed, working copy is still unchanged.

The - - dry-run option doesn't actually apply any local changes to the working copy. It only shows
status codes that would be printed in areal merge. It's useful for getting a“high level” preview of the po-
tential merge, for those times when running svn diff gives too much detail.

Subversion and Changesets

Everyone seems to have a dlightly different definition of “changeset”, or at least a different expectation of
what it means for a version control system to have “changeset features’. For our purpose, let's say that a
changeset is just a collection of changes with a unique name. The changes might include textual edits to file
contents, modifications to tree structure, or tweaks to metadata. In more common speak, a changeset is just a
patch with a name you can refer to.

In Subversion, a global revision number N names a tree in the repository: it's the way the repository looked
after the Nth commit. It's also the name of an implicit changeset: if you compare tree N with tree N-1, you can
derive the exact patch that was committed. For this reason, it's easy to think of “revision N” as not just a tree,
but a changeset as well. If you use an issue tracker to manage bugs, you can use the revision numbers to refer
to particular patches that fix bugs—for example, “this issue was fixed by revision 9238.”. Somebody can then
run svn log -r 9238 to read about the exact changeset which fixed the bug, and run svn diff -r9237:9238 to see
the patch itself. And Subversion's mer ge command also uses revision numbers. You can merge specific
changesets from one branch to another by naming them in the merge arguments: svn merge -r9237:9238
would merge changeset #9238 into your working copy.

Merge Conflicts

Just like the svn update command, svn mer ge applies changes to your working copy. And therefore it's
also capable of creating conflicts. The conflicts produced by svn merge, however, are sometimes differ-
ent, and this section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a particular
revision, the changes sent by the server will aways apply “cleanly” to your working copy. The server
produces the delta by comparing two trees: a virtual snapshot of your working copy, and the revision
tree you're interested in. Because the left-hand side of the comparison is exactly equal to what you
already have, the deltais guaranteed to correctly convert your working copy into the right-hand tree.

But svn merge has no such guarantees and can be much more chaotic: the user can ask the server to
compare any two trees at al, even ones that are unrelated to the working copy! This means there's large
potential for human error. Users will sometimes compare the wrong two trees, creating a delta that
doesn't apply cleanly. svn merge will do its best to apply as much of the delta as possible, but some
parts may be impossible. Just like the Unix patch command sometimes complains about “failed hunks”,
svn merge will complain about “skipped targets’:

$ svn nerge -r 1288:1351 http://svn. exanpl e. conl repos/ branch
U foo.c

55

U bar.c
Ski pped missing target: 'baz.c'

U glub.c
C glorb.h
$

In the previous example it might be the case that baz. ¢ exists in both snapshots of the branch being
compared, and the resulting delta wants to change the file's contents, but the file doesn't exist in the
working copy. Whatever the case, the “ skipped” message means that the user is most likely comparing
the wrong two trees; they're the classic sign of driver error. When this happens, it's easy to recursively
revert all the changes created by the merge (svn revert --recursive), delete any unversioned files or dir-
ectories |eft behind after the revert, and re-run svn mer ge with different arguments.

Also notice that the previous example shows a conflict happening on gl or b. h. We aready stated that
the working copy has no local edits: how can a conflict possibly happen? Again, because the user can
use svn merge to define and apply any old delta to the working copy, that delta may contain textual
changes that don't cleanly apply to aworking file, even if the file has no local modifications.

Another small difference between svn update and svn mer ge are the names of the full-text files created
when a conflict happens. In the section called “Resolve Conflicts (Merging Others' Changes)”, we saw
that an update produces files named fil enane. nine, fil ename.r OLDREV, and fil e-
name. r NEWREV. When svn merge produces a conflict, though, it creates three files named fi | e-
name. wor ki ng, filenanme.left, and fil enane. right. In this case, the terms “left” and
“right” are describing which side of the double-tree comparison the file came from. In any case, these

In these situations, you'll want svn merge to do a path-based comparison only, ignoring any relations
between files and directories. Add the - - i gnor e- ancest ry option to your merge command, and it
will behave just like svn diff. (And conversely, the - - not i ce- ancest ry option will cause svn diff
to behave like the mer ge command.)

Common Use-Cases

There are many different uses for branching and svn merge, and this section describes the most com-
mon ones you're likely to run into.

Merging a Whole Branch to Another

To complete our running example, we'll move forward in time. Suppose several days have passed, and
many changes have happened on both the trunk and your private branch. Suppose that you've finished
working on your private branch; the feature or bug fix is finally complete, and now you want to merge
all of your branch changes back into the trunk for othersto enjoy.

So how do we use svn merge in this scenario? Remember that this command compares two trees, and
applies the differences to a working copy. So to receive the changes, you need to have a working copy
of the trunk. We'll assume that either you still have your original one lying around (fully updated), or
that you recently checked out a fresh working copy of / cal ¢/ t r unk.

But which two trees should be compared? At first glance, the answer may seem obvious: just compare
the latest trunk tree with your latest branch tree. But beware—this assumption is wrong, and has burned
many a new user! Since svn mer ge operates like svn diff, comparing the latest trunk and branch trees
will not merely describe the set of changes you made to your branch. Such a comparison shows too
many changes. it would not only show the addition of your branch changes, but aso the removal of
trunk changes that never happened on your branch.

To express only the changes that happened on your branch, you need to compare the initial state of your
branch to its final state. Using svn log on your branch, you can see that your branch was created in revi-
sion 341. And the final state of your branch is simply a matter of using the

Branching and Merging

As expected, the final revision printed by this command is the revision in which ny-
cal c- br anch was created by copying.

Here's the final merging procedure, then:

$ cd calc/trunk
$ svn update
At revision 405.

$ svn merge -r 341:405 http://svn.exanpl e. com repos/ cal ¢/ branches/ my-cal c- branch
U integer.c

button.c

Makefile

]
]
$ svn status
M integer.c
M
M

button.c
Makefil e
...examne the diffs, conpile, test, etc...
$ svn commit -m "Merged ny-cal c-branch changes r341: 405 into the trunk."
Sendi ng i nteger.c
Sendi ng button.c
Sendi ng Makefil e

Transmtting file data ...
Conmitted revision 406.

Again, notice that the commit log message very specifically mentions the range of changes that was
merged into the trunk. Always remember to do this, because it's critical information you'll need later on.

For example, suppose you decide to keep working on your branch for another week, in order to com-
plete an enhancement to your original feature or bug fix. The repository's HEAD revision is now 480, and
you're ready to do another merge from your private branch to the trunk. But as discussed in the section
called “Best Practices for Merging”, you don't want to merge the changes you've already merged before;
you only want to merge everything “new” on your branch since the last time you merged. Thetrick isto
figure out what's new.

The first step isto run svn log on the trunk, and look for a log message about the last time you merged
from the branch:

$ cd cal c/trunk
$ svn log

r406 | user | 2004-02-08 11:17:26 -0600 (Sun, 08 Feb 2004) | 1 line
Mer ged ny-cal c-branch changes r341: 405 into the trunk.

Ahal Since al branch-changes that happened between revisions 341 and 405 were previously merged to
the trunk as revision 406, you now know that you want to merge only the branch changes after that—by
comparing revisions 406 and HEAD.

$ cd calc/trunk

58

Branching and Merging

$ svn update
At revision 480.

We notice that HEAD is currently 480, so we use it to do the nerge:

$ svn nerge -r 406:480 http://svn.exanpl e.confrepos/cal c/ branches/ ny-cal c-branch

U integer.c

U button.c

U Makefile

$ svn conmmit -m "Merged ny-cal c-branch changes r406:480 into the trunk."
Sendi ng i nteger.c

Sendi ng button.c

Sendi ng Makefil e

Transmitting file data ...
Conmitted revision 481.

Now the trunk contains the complete second wave of changes made to the branch. At this point, you can
either delete your branch (we'll discuss thislater on), or continue working on your branch and repeat this
procedure for subsequent merges.

Undoing Changes

Another common use for svn mergeisto roll back a change that has already been committed. Suppose
you're working away happily on a working copy of / cal ¢/t r unk, and you discover that the change
made way back in revision 303, which changed i nt eger . c, iscompletely wrong. It never should have
been committed. Y ou can use svn merge to “undo” the change in your working copy, and then commit
the local modification to the repository. All you need to do is to specify areverse difference:

$ svn nerge -r 303:302 http://svn.exanpl e.con repos/cal c/trunk
U integer.c

$ svn status
M integer.c

$ svn diff

#'verify that the change is renoved

$ svn commit -m "Undoi ng change conmitted in r303."
Sendi ng i nteger.c

Transmtting file data .

Committed revision 350.

One way to think about arepository revision is as a specific group of changes (some version control sys-
tems call these changesets). By using the - r switch, you can ask svn merge to apply a changeset, or
whole range of changesets, to your working copy. In our case of undoing a change, we're asking svn
mer ge to apply changeset #303 to our working copy backwards.

Keep in mind that rolling back a change like this is just like any other svn merge operation, so you
should use svn status and svn diff to confirm that your work isin the state you want it to bein, and then
use svn commit to send the final version to the repository. After committing, this particular changeset is
no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in
revision 303. If somebody checks out a version of the cal ¢ project between revisions 303 and 349,
they'll still see the bad change, right?

59

Yes, that's true. When we talk about “removing” a change, we're really talking about removing it from
HEAD. The original change still exists in the repository's history. For most situations, this is good
enough. Most people are only interested in tracking the HEAD of a project anyway. There are special
cases, however, where you really might want to destroy all evidence of the commit. (Perhaps somebody
accidentally committed a confidential document.) Thisisn't so easy, it turns out, because Subversion was
deliberately designed to never lose information. Revisions are immutable trees which build upon one an-
other. Removing a revision from history would cause a domino effect, creating chaos in all subsequent
revisions and possibly invalidating all working copies. 3

Resurrecting Deleted Items

The great thing about version control systems is that information is never lost. Even when you delete a
file or directory, it may be gone from the HEAD revision, but the object still exists in earlier revisions.
One of the most common questions new users ask is, “How do | get my old file or directory back?’.

The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you
can think of every object in the repository as existing in a sort of two-dimensiona coordinate system.
The first coordinate is a particular revision tree, and the second coordinate is a path within that tree. So
every version of your file or directory can be defined by a specific coordinate pair.

Subversion has no At t i ¢ directory like CV'S does, 450 you need to use svn log to discover the exact
coordinate pair you wish to resurrect. A good strategy is to run svn log --verbose in a directory which
used to contain your deleted item. The - - ver bose option shows alist of al changed items in each re-
vision; al you need to do is find the revision in which you deleted the file or directory. Y ou can do this
visualy, or by using another tool to examine the log output (via grep, or perhaps via an incremental
search in an editor).

$ cd parent-dir
$ svn |l og --verbose

The Subversion project has plans, however, to someday implement an svnadmin obliterate command that would accomplish the task of per-
manently deleting information. In the meantime, see the section called “svndumpfilter” for a possible workaround.
“Because CV'S doesn't version trees, it createsan At t i ¢ areawithin each repository directory as away of remembering deleted files.

Branching and Merging

In this particular example, however, thisis probably not the best strategy. Reverse-applying revision 808
would not only schedule r eal . ¢ for addition, but the log message indicates that it would also undo
certain changesto i nt eger . ¢, which you don't want. Certainly, you could reverse-merge revision 808
and then svn revert the local modificationsto i nt eger . c, but this technique doesn't scale well. What
if there were 90 files changed in revision 8087

A second, more targeted strategy is not to use svn merge at all, but rather the svn copy command.
Simply copy the exact revision and path “ coordinate pair” from the repository to your working copy:

$ svn copy --revision 807 \
http://svn. exanpl e.conirepos/calc/trunk/real.c ./real.c

$ svn status
A + real.c

$ svn commit -m"Resurrected real.c fromrevision 807, /calc/trunk/real.c.
Addi ng real.c

Transmitting file data .

Committed revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but sched-
uled for addition “with history”. Subversion remembers where it was copied from. In the future, running
svn log on this file will traverse back through the file's resurrection and through al the history it had pri-
or to revision 807. In other words, thisnew r eal . ¢ isn't really new; it's a direct descendant of the ori-
gina, deleted file.

Although our example shows us resurrecting afile, note that these same techniques work just as well for
resurrecting deleted directories.

Common Branching Patterns

Version control is most often used for software development, so here's a quick peek at two of the most
common branching/merging patterns used by teams of programmers. If you're not using Subversion for
software development, feel free to skip this section. If you're a software developer using version control
for the first time, pay close attention, as these patterns are often considered best practices by experienced
folk. These processes aren't specific to Subversion; they're applicable to any version control system.
Still, it may help to see them described in Subversion terms.

Release Branches

Most software has atypical lifecycle: code, test, release, repeat. There are two problems with this pro-
cess. First, developers need to keep writing new features while quality-assurance teams take time to test
supposedly-stable versions of the software. New work cannot halt while the software is tested. Second,
the team almost always needs to support older, released versions of software; if a bug is discovered in
the latest code, it most likely existsin released versions as well, and customers will want to get that bug-
fix without having to wait for amajor new release.

Here's where version control can help. The typical procedure looks like this:
» Developers commit all new work to the trunk. Day-to-day changes are committed to / t r unk: new
features, bugfixes, and so on.

e Thetrunk is copied to a “release” branch. When the team thinks the software is ready for release
(say, al.0release), then/ t r unk might be copiedto/ br anches/ 1. 0.

» Teams continue to work in parallel. One team begins rigorous testing of the release branch, while

61

another team continues new work (say, for version 2.0) on/ t r unk. If bugs are discovered in either

$ cd trunk-worki ng- copy

$ svn update
At revision 1910.

$ svn nerge http://svn.exanpl e.com repos/cal ¢c/trunk@910 \
htt p://svn. exanpl e. conl repos/ cal ¢/ branches/ mybranch@910
real.c
i nteger.c
newdi rect ory
newdi rectory/ newfil e

1 >>CC

1. Copy the project's entire “trunk” to a new branch directory.

2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch-work only needs to happen on a specific subdirectory,
they use svn switch to move only that subdirectory to the branch. (Or sometimes users will switch just a
single working file to the branch!) That way, they can continue to receive normal “trunk” updates to
most of their working copy, but the switched portions will remain immune (unless someone commits a
change to their branch). This feature adds a whole new dimension to the concept of a “mixed working
copy”—not only can working copies contain a mixture of working revisions, but a mixture of repository
locations as well.

If your working copy contains a number of switched subtrees from different repository locations, it con-
tinues to function as normal. When you update, you'll receive patches to each subtree as appropriate.
When you commit, your local changes will still be applied as a single, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these loca
tions must all be within the same repository. Subversion repositories aren't yet able to communicate with
one another; that's a feature planned beyond Subversion 1.0°

Switches and Updates

Have you noticed that the output of svn switch and svn update look the same? The swi t ch command is ac-
tually a superset of the update command.

When you run svn update, you're asking the repository to compare two trees. The repository does so, and
then sends a description of the differences back to the client. The only difference between svn switch and svn
updateisthat the updat e command always compares two identical paths.

That is, if your working copy is a mirror of / cal ¢/t r unk, then svn update will automatically compare

5Y ou can, however, use svn switch with the - - r el ocat e switch if the URL of your server changes and you don't want to abandon an existing
working copy. See the svn switch section in Chapter 9, Subversion Complete Reference for more information and an example.

Branching and Merging

version, this idea already seems to be everywhere. Each repository revision is exactly that—a snapshot
of the filesystem after each commit.

However, people often want to give more human-friendly namesto tags, liker el ease- 1. 0. And they
want to make snapshots of smaller subdirectories of the filesystem. After al, it's not so easy to remem-
ber that release-1.0 of a piece of softwareis a particular subdirectory of revision 4822.

Creating a Simple Tag

Once again, svn copy comes to the rescue. If you want to create a snapshot of / cal ¢/t r unk exactly
asit looks in the HEAD revision, then make a copy of it:

$ svn copy http://svn. exanpl e.conlrepos/cal c/trunk \
http://svn. exanpl e. con repos/cal c/tags/rel ease-1.0 \
-m"Tagging the 1.0 rel ease of the 'calc' project."

Committed revision 351.

This example assumesthat a/ cal c/ t ags directory already exists. (If it doesn't, see svn mkdir). After
the copy completes, the new r el ease- 1. 0 directory is forever a snapshot of how the project looked
in the HEAD revision at the time you made the copy. Of course you might want to be more precise about
exactly which revision you copy, in case somebody else may have committed changes to the project
when you weren't looking. So if you know that revision 350 of / cal ¢/t r unk is exactly the snapshot
you want, you can specify it by passing - r 350 to the svn copy command.

But wait a moment: isn't this tag-creation procedure the same procedure we used to create a branch?
Yes, infact, itis. In Subversion, there's no difference between atag and a branch. Both are just ordinary
directories that are created by copying. Just as with branches, the only reason a copied directory is a
“tag” is because humans have decided to treat it that way: as long as nobody ever commits to the direct-
ory, it forever remains a snapshot. If people start committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags. The first
approach is “hands off”: as a matter of project policy, decide where your tags will live, and make sure
all users know how to treat the directories they copy in there. (That is, make sure they know not to com-
mit to them.) The second approach is more paranoid: you can use one of the access-control scripts
provided with Subversion to prevent anyone from doing anything but creating new copies in the tags-
area (See Chapter 6, Server Configuration.) The paranoid approach, however, isn't usually necessary. If
a user accidentally commits a change to atag-directory, you can simply undo the change as discussed in
the previous section. Thisisversion control, after all.

Creating a Complex Tag

Sometimes you may want your “snapshot” to be more complicated than a single directory at asingle re-
vision.

For example, pretend your project is much larger than our cal ¢ example: suppose it contains a number
of subdirectories and many more files. In the course of your work, you may decide that you need to cre-
ate aworking copy that is designed to have specific features and bug fixes. You can accomplish this by
selectively backdating files or directories to particular revisions (using svn update -r liberally), or by
switching files and directories to particular branches (making use of svn switch). When you're done,
your working copy is a hodgepodge of repository locations from different revisions. But after testing,
you know it's the precise combination of data you need.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make
a snapshot of your exact working copy arrangement and store it in the repository. Luckily, svn copy ac-
tually has four different uses (which you can read about in Chapter 9), including the ability to copy a

65

working-copy tree to the repository:

$1Is
ny- wor ki ng- copy/

$ svn copy ny-worki ng-copy http://svn. exanpl e. coni repos/ cal c/tags/ nmytag

Committed revision 352.

Now there is a new directory in the repository, / cal ¢/ t ags/ nyt ag, which is an exact snapshot of
your working copy—mixed revisions, URLs, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a
bunch of local changes made to your working copy, and you'd like a collaborator to see them. Instead of
running svn diff and sending a patch file (which won't capture tree changes, symlink changes or changes
in properties), you can instead use svn copy to “upload” your working copy to a private area of the re-
pository. Your collaborator can then either checkout a verbatim copy of your working copy, or use svn
mer ge to receive your exact changes.

Branch Maintenance

You may have noticed by now that Subversion is extremely flexible. Because it implements branches
and tags with the same underlying mechanism (directory copies), and because branches and tags appear
in normal filesystem space, many people find Subversion intimidating. It's almost too flexible. In this
section, we'll offer some suggestions for arranging and managing your data over time.

Repository Layout

There are some standard, recommended ways to organize a repository. Most people create at r unk dir-
ectory to hold the “main line” of development, a br anches directory to contain branch copies, and a
t ags directory to contain tag copies. If a repository holds only one project, then often people create
these top-level directories:

/trunk
/ branches
/tags

If arepository contains multiple projects, admins typically index their layout by project (see the section
called “Choosing a Repository Layout” to read more about “ project roots’):

[pai nt/trunk

/ pai nt/ branches
/ pai nt/tags
/cal c/trunk

/ cal c/ branches
/ cal c/tags

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever
works best for you or your team. Remember that whatever you choose, it's not a permanent commit-

Branching and Merging

Remember, though, that while moving directories may be easy to do, you need to be considerate of your
users as well. Your juggling can be disorienting to users with existing working copies. If a user has a
working copy of a particular repository directory, your svn move operation might remove the path from
the latest revision. When the user next runs svn update, she will be told that her working copy repres-
ents a path that no longer exists, and the user will be forced to svn switch to the new location.

Data Lifetimes

Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like
any other versioned item. For example, suppose you eventually finish all your work on your personal
branch of the cal ¢ project. After merging all of your changes back into / cal ¢/t r unk, there's no
need for your private branch directory to stick around anymore:

$ svn delete http://svn. exanpl e. coni repos/ cal c/ branches/ my-cal c- branch \
-m "Renovi ng obsol ete branch of calc project.”

Committed revision 375.

And now your branch is gone. Of course it's not really gone: the directory is simply missing from the
HEAD revision, no longer distracting anyone. If you use svn checkout, svn switch, or svn list to exam-
ine an earlier revision, you'll still be able to see your old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data is very
easy in Subversion. If there's a deleted directory (or file) that you'd like to bring back into HEAD, simply
use svn copy -r to copy it from the old revision:

$ svn copy -r 374 http://svn.exanpl e. confrepos/cal c/ branches/ ny-cal c-branch \
http://svn. exanpl e. coni r epos/ cal ¢/ branches/ ny-cal c- branch

Committed revision 376.

In our example, your personal branch had arelatively short lifetime: you may have created it to fix abug
or implement a new feature. When your task is done, so is the branch. In software devel opment, though,
it's also common to have two “main” branches running side-by-side for very long periods. For example,
suppose it's time to release a stable version of the cal ¢ project to the public, and you know it's going to
take a couple of months to shake bugs out of the software. Y ou don't want people to add new features to
the project, but you don't want to tell all developers to stop programming either. So instead, you create a
“stable” branch of the software that won't change much:

$ svn copy http://svn. exanpl e.conlrepos/cal c/trunk \
http://svn. exanpl e. com repos/ cal c/ branches/stable-1.0 \
-m"Creating stable branch of calc project.”

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) features to /

cal ¢/ trunk, and you can declare a project policy that only bug fixes are to be committed to /

cal ¢/ branches/ st abl e- 1. 0. That is, as people continue to work on the trunk, a human select-
ively ports bug fixes over to the stable branch. Even after the stable branch has shipped, you'll probably
continue to maintain the branch for along time—that is, as long as you continue to support that release
for customers.

67

Branching and Merging

Summary

We've covered a lot of ground in this chapter. We've discussed the concepts of tags and branches, and
demonstrated how Subversion implements these concepts by copying directories with the svn copy
command. We've shown how to use svh mer ge to copy changes from one branch to another, or roll back
bad changes. We've gone over the use of svn switch to create mixed-location working copies. And
we've talked about how one might manage the organization and lifetimes of branches in arepository.

Remember the Subversion mantra: branches and tags are cheap. So use them liberally!

68

Chapter 5. Repository Administration

The Subversion repository is the central storehouse of versioned data for any number of projects. As
such, it becomes an obvious candidate for all the love and attention an administrator can offer. While the
repository is generally a low-maintenance item, it is important to understand how to properly configure
and carefor it so that potential problems are avoided, and actual problems are safely resolved.

In this chapter, well discuss how to create and configure a Subversion repository. Wel'll also talk about
repository maintenance, including the use of the svnlook and svhadmin tools (which are provided with
Subversion). We'll address some common questions and mistakes, and give some suggestions on how to
arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version con-
trol (that is, via a Subversion client), you can skip this chapter altogether. However, if you are, or wish
to become, a Subversion repository administrator, ! you should definitely pay attention to this chapter.

Repository Basics

Before jumping into the broader topic of repository administration, let's further define what a repository
is. How does it look? How does it feel? Does it take its tea hot or iced, sweetened, and with lemon? As
an administrator, you'll be expected to understand the composition of a repository both from a logical
perspective—dealing with how data is represented inside the repository—and from a physical nuts-
and-bolts perspective—how a repository looks and acts with respect to non-Subversion tools. The fol-
lowing section covers some of these basic concepts at avery high level.

Understanding Transactions and Revisions

Conceptually speaking, a Subversion repository is a sequence of directory trees. Each tree is a snapshot
of how the files and directories versioned in your repository looked at some point in time. These snap-
shots are created as aresult of client operations, and are called revisions.

Every revision begins life as a transaction tree. When doing a commit, a client builds a Subversion trans-
action that mirrors their local changes (plus any additional changes that might have been made to the re-
pository since the beginning of the client's commit process), and then instructs the repository to store
that tree as the next snapshot in the sequence. If the commit succeeds, the transaction is effectively pro-
moted into a new revision tree, and is assigned a new revision number. If the commit fails for some reas-
on, the transaction is destroyed and the client isinformed of the failure.

Updates work in asimilar way. The client builds a temporary transaction tree that mirrors the state of the
working copy. The repository then compares that transaction tree with the revision tree at the requested
revision (usually the most recent, or “youngest” tree), and sends back information that informs the client
about what changes are needed to transform their working copy into areplica of that revision tree. After
the update completes, the temporary transaction is deleted.

The use of transaction trees is the only way to make permanent changes to a repository's versioned
filesystem. However, it'simportant to understand that the lifetime of atransaction is completely flexible.
In the case of updates, transactions are temporary trees that are immediately destroyed. In the case of
commits, transactions are transformed into permanent revisions (or removed if the commit fails). In the
case of an error or bug, it's possible that a transaction can be accidentally Ieft lying around in the reposit-
ory (not really affecting anything, but still taking up space).

This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm beyond the working
copy where everyone's data hangs out.

69

In theory, someday whole workflow applications might revolve around more fine-grained control of

2Pronounced “fuzz-fuzz’, if Jack Repenning has anything to say about it.

Repository Administration

Feature Berkeley DB FSFS
Platform-independent storage no yes

Usable over network filesystems no yes

Repository size dlightly larger dlightly smaller

Scalability: number of revision trees

database; no problems

some older native filesystems don't
scale well with thousands of entries
inasingle directory.

Scalahility: directories with many [slower faster
files
Speed: checking out latest code faster slower

Speed: large commits

slower, but work is spread throughout
commit

faster, but finalization delay may
cause client timeouts

Group permissions handling

sensitive to user umask problems;
best if accessed by only one user.

works around umask problems

Code maturity

in use since 2001

in use since 2004

Berkeley DB

When the initial design phase of Subversion wasin progress, the developers decided to use Berkeley DB
for a variety of reasons, including its open-source license, transaction support, reliability, performance,
API simplicity, thread-safety, support for cursors, and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes
accessing your Subversion repositories don't have to worry about accidentally clobbering each other's
data. The isolation provided by the transaction system is such that for any given operation, the Subver-
sion repository code sees a static view of the database—not a database that is constantly changing at the
hand of some other process—and can make decisions based on that view. If the decision made happens
to conflict with what another process is doing, the entire operation is rolled back asif it never happened,
and Subversion gracefully retries the operation against a new, updated (and yet till static) view of the

database.

Another great feature of Berkeley DB is hot backups—the ability to backup the database environment

without taking it “offling”.

Well discuss how to backup your repository in the section called

“Repository Backup”, but the benefits of being able to make fully functional copies of your repositories
without any downtime should be obvious.

Berkeley DB is aso a very reliable database system. Subversion uses Berkeley DB's logging facilities,
which means that the database first writes to on-disk log files a description of any modifications it is
about to make, and then makes the modification itself. Thisis to ensure that if anything goes wrong, the
database system can back up to a previous checkpoint—a location in the log files known not to be cor-
rupt—and replay transactions until the data is restored to a usable state. See the section called
“Managing Disk Space” for more about Berkeley DB log files.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berke-
ley DB environments are not portable. Y ou cannot simply copy a Subversion repository that was created
on a Unix system onto a Windows system and expect it to work. While much of the Berkeley DB data-
base format is architecture independent, there are other aspects of the environment that are not.
Secondly, Subversion uses Berkeley DB in a way that will not operate on Windows 95/98 systems—if
you need to house a repository on a Windows machine, stick with Windows 2000 or Windows XP. Also,
you should never keep a Berkeley DB repository on a network share. While Berkeley DB promises to
behave correctly on network shares that meet a particular set of specifications, almost no known shares
actually meet all those specifications.

Finally, because Berkeley DB is alibrary linked directly into Subversion, it's more sensitive to interrup-

71

Repository Administration

FSFS

tions than a typical relationa database system. Most SQL systems, for example, have a dedicated server
process that mediates all access to tables. If a program accessing the database crashes for some reason,
the database daemon natices the lost connection and cleans up any mess left behind. And because the
database daemon is the only process accessing the tables, applications don't need to worry about permis-
sion conflicts. These things are not the case with Berkeley DB, however. Subversion (and programs us-
ing Subversion libraries) access the database tables directly, which means that a program crash can leave
the database in a temporarily inconsistent, inaccessible state. When this happens, an administrator needs
to ask Berkeley DB to restore to a checkpoint, which is a bit of an annoyance. Other things can cause a
repository to “wedge” besides crashed processes, such as programs conflicting over ownership and per-
missions on the database files. So while a Berkeley DB repository is quite fast and scalable, it's best
used by a single server process running as one user—such as Apache's httpd or svnserve (see
Chapter 6, Server Configuration)—rather than accessing it as many different usersviafile:/// or
svn+ssh: // URLs. If using a Berkeley DB repository directly as multiple users, be sure to read the
section called “ Supporting Multiple Repository Access Methods'.

In mid-2004, a second type of repository storage system came into being: one which doesn't use a data-
base at all. An FSFS repository storesarevision treein asingle file, and so all of arepository's revisions
can be found in a single subdirectory full of numbered files. Transactions are created in separate subdir-
ectories. When complete, a single transaction file is created and moved to the revisions directory, thus
guaranteeing that commits are atomic. And because a revision file is permanent and unchanging, the re-
pository also can be backed up while “hot”, just like a Berkeley DB repository.

The revision-file format represents a revision's directory structure, file contents, and deltas against files
in other revision trees. Unlike a Berkeley DB database, this storage format is portable across different
operating systems and isn't sensitive to CPU architecture. Because there's no journaling or shared-
memory files being used, the repository can be safely accessed over a network filesystem and examined
in aread-only environment. The lack of database overhead also means that the overall repository sizeis
abit smaller.

FSFS has different performance characteristics too. When committing a directory with a huge number of
files, FSFS uses an O(N) algorithm to append entries, while Berkeley DB uses an O(N”2) algorithm to
rewrite the whole directory. On the other hand, FSFS writes the latest version of afile as a delta against
an earlier version, which means that checking out the latest tree is a bit slower than fetching the fulltexts
stored in a Berkeley DB HEAD revision. FSFS also has alonger delay when finalizing a commit, which
could in extreme cases cause clients to time out when waiting for a response.

The most important distinction, however, is FSFS's inability to be “wedged” when something goes
wrong. If aprocess using a Berkeley DB database runs into a permissions problem or suddenly crashes,
the database is |eft unusable until an administrator recoversiit. If the same scenarios happen to a process
using an FSFS repository, the repository isn't affected at all. At worst, some transaction data is left be-
hind.

The only real argument against FSFS is its relative immaturity compared to Berkeley DB. It hasn't been
used or stress-tested nearly as much, and so alot of these assertions about speed and scalability are just
that: assertions, based on good guesses. In theory, it promises a lower barrier to entry for new adminis-
trators and is less susceptible to problems. In practice, only time will tell.

Repository Creation and Configuration

Creating a Subversion repository is an incredibly simple task. The svnadmin utility, provided with Sub-
version, has a subcommand for doing just that. To create a new repository, just run:

$ svnadm n create /path/to/repos

72

Repository Administration

This creates a hew repository in the directory / pat h/ t o/ r epos. This new repository begins life at
revision 0, which is defined to consist of nothing but the top-level root (/) filesystem directory. Initially,
revision 0 also has a single revision property, svn: dat e, set to the time at which the repository was
created.

In Subversion 1.2, a repository is created with an FSFS back-end by default (see the section called
“Repository Data Stores”). The back-end can be explicitly chosen with the - - f s- t ype argument:

$ svnadmin create --fs-type fsfs /path/to/repos
$ svnadmi n create --fs-type bdb /path/to/other/repos

Q Warning

Do not create a Berkeley DB repository on a network share—it cannot exist on a remote
filesystem such as NFS, AFS, or Windows SMB. Berkeley DB requires that the underlying
filesystem implement strict POSIX locking semantics, and more importantly, the ability to
map files directly into process memory. Almost no network filesystems provide these fea
tures. If you attempt to use Berkeley DB on a network share, the results are unpredict-
able—you may see mysterious errors right away, or it may be months before you discover
that your repository database is subtly corrupted.

If you need multiple computers to access the repository, you create an FSFS repository on
the network share, not a Berkeley DB repository. Or better yet, set up area server process
(such as Apache or svnserve), store the repository on a loca filesystem which the server
can access, and make the repository available over a network. Chapter 6, Server Configur-
ation covers this process in detail.

You may have noticed that the path argument to svnadmin was just a regular filesystem path and not a
URL like the svn client program uses when referring to repositories. Both svnadmin and svnlook are
considered server-side utilities—they are used on the machine where the repository resides to examine
or modify aspects of the repository, and are in fact unable to perform tasks across a network. A common
mistake made by Subversion newcomersistrying to pass URLs (even “loca” fi | e: ones) to these two
programs.

So, after you've run the svnadmin create command, you have a shiny new Subversion repository in its
own directory. Let'stake a peek at what is actually created inside that subdirectory.

$ |Is repos
conf/ dav/ db/ format hooks/ |ocks/ README. txt

With the exception of the README. t xt and f or mat files, the repository directory is a collection of
subdirectories. Asin other areas of the Subversion design, modularity is given high regard, and hierarch-
ical organization is preferred to cluttered chaos. Here is a brief description of all of the items you see in
your new repository directory:

conf
A directory containing repository configuration files.

dav
A directory provided to Apache and mod_dav_svn for their private housekeeping data.

db
Where all of your versioned data resides. This directory is either a Berkeley DB environment (full of DB tables

73

and other things), or is an FSFS environment containing revision files.

format
A file whose contents are a single integer value that dictates the version number of the repository layout.

hooks
A directory full of hook script templates (and hook scripts themselves, once you've installed some).

locks
A directory for Subversion's repository locking data, used for tracking accessors to the repository.

README.txt
A filewhich merely informsits readers that they are looking at a Subversion repository.

In general, you shouldn't tamper with your repository “by hand”. The svnadmin tool should be suffi-
cient for any changes necessary to your repository, or you can look to third-party tools (such as Berkeley
DB's tool suite) for tweaking relevant subsections of the repository. Some exceptions exist, though, and
we'll cover those here.

Hook Scripts

A hook is a program triggered by some repository event, such as the creation of a new revision or the
modification of an unversioned property. Each hook is handed enough information to tell what that
event is, what target(s) it's operating on, and the username of the person who triggered the event. De-
pending on the hook's output or return status, the hook program may continue the action, stop it, or sus-
pend it in some way.

Thehooks subdirectory is, by default, filled with templates for various repository hooks.

Repository Administration

but doesn't work when run by Subversion. Be sure to explicitly set environment variables
in your hook and/or use absolute paths to programs.

There are nine hooks implemented by the Subversion repository:

start-comm t
This is run before the commit transaction is even created. It is typically used to decide if the user has commit
privileges at all. The repository passes two arguments to this program: the path to the repository, and username
which is attempting the commit. If the program returns a non-zero exit value, the commit is stopped before the
transaction is even created. If the hook program writes data to stderr, it will be marshalled back to the client.

pre-comm t
This is run when the transaction is complete, but before it is committed. Typically, this hook is used to protect
against commits that are disallowed due to content or location (for example, your site might require that all
commits to a certain branch include a ticket number from the bug tracker, or that the incoming log message is
non-empty). The repository passes two arguments to this program: the path to the repository, and the name of
the transaction being committed. If the program returns a non-zero exit value, the commit is aborted and the
transaction is removed. If the hook program writes data to stderr, it will be marshalled back to the client.

The Subversion distribution includes some access control scripts (located in thet ool s/ hook- scri pts dir-
ectory of the Subversion source tree) that can be called from pre-commit to implement fine-grained write-ac-
cess control. Another option is to use the mod_authz_svn Apache httpd module, which provides both read and
write access control on individual directories (see the section called “Per-Directory Access Control”). In a fu-
ture version of Subversion, we plan to implement access control lists (ACLS) directly in the filesystem.

post - conmi t
Thisis run after the transaction is committed, and a new revision is created. Most people use this hook to send
out descriptive emails about the commit or to make a backup of the repository. The repository passes two argu-
ments to this program: the path to the repository, and the new revision number that was created. The exit code
of the program is ignored.

The Subversion distribution includes mailer.py and commit-email.pl scripts (located in the t ool s/
hook- scri pt s/ directory of the Subversion source tree) that can be used to send email with (and/or append
to alog file) a description of a given commit. This mail contains alist of the paths that were changed, the log
message attached to the commit, the author and date of the commit, as well as a GNU diff-style display of the
changes made to the various versioned files as part of the commit.

Another useful tool provided by Subversion isthe hot-backup.py script (located in thet ool s/ backup/ dir-
ectory of the Subversion source tree). This script performs hot backups of your Subversion repository (afeature
supported by the Berkeley DB database back-end), and can be used to make a per-commit snapshot of your re-
pository for archival or emergency recovery purposes.

pre-revprop- change
Because Subversion's revision properties are not versioned, making modifications to such a property (for ex-
ample, the svn: | og commit message property) will overwrite the previous value of that property forever.
Since data can be potentially lost here, Subversion supplies this hook (and its counterpart, post -rev-
pr op- change) so that repository administrators can keep records of changes to these items using some ex-
ternal means if they so desire. As a precaution against losing unversioned property data, Subversion clients will
not be allowed to remotely modify revision properties at all unless this hook isimplemented for your repository.

This hook runs just before such a modification is made to the repository. The repository passes four arguments
to this hook: the path to the repository, the revision on which the to-be-modified property exists, the authentic-
ated username of the person making the change, and the name of the property itself.

post - r evpr op- change
As mentioned earlier, this hook is the counterpart of the pr e- r evpr op- change hook. In fact, for the sake of
paranoiathis script will not run unlessthe pr e- r evpr op- change hook exists. When both of these hooks are

75

Repository Administration

present, the post - r evpr op- change hook runsjust after arevision property has been changed, and is typic-
ally used to send an email containing the new value of the changed property. The repository passes four argu-
ments to this hook: the path to the repository, the revision on which the property exists, the authenticated user-
name of the person making the change, and the name of the property itself.

The Subversion distribution includes a propchange-email.pl script (located in thet ool s/ hook-scri pts/
directory of the Subversion source tree) that can be used to send email with (and/or append to alog file) the de-
tails of arevision property change. This mail contains the revision and name of the changed property, the user
who made the change, and the new property value.

pre-1ock
This hook runs whenever someone attemptsto lock afile. It can be used to prevent locks altogether, or to create
amore complex policy specifying exactly which users are allowed to lock particular paths. If the hook notices a
pre-existing lock, then it can also decide whether a user is allowed to “steal” the existing lock. The repository
passes three arguments to the hook: the path to the repository, the path being locked, and the user attempting to
perform the lock. If the program returns a non-zero exit value, the lock action is aborted and anything printed to
stderr is marshalled back to the client.

post - | ock
This hook runs after a path is locked. The locked path is passed to the hook's stdin, and the hook also receives
two arguments: the path to the repository, and the user who performed the lock. The hook is then free to send
email notification or record the event in any way it chooses. Because the lock aready happened, the output of
the hook isignored.

pre-unl ock

This hook runs whenever someone attempts to remove alock on afile. It can be used to create policies that spe-
cify which users are allowed to unlock particular paths. It's particularly important for determining policies about
lock breakage. If user A locks afile, is user B allowed to break the lock? What if the lock is more than a week
old? These sorts of things can be decided and enforced by the hook. The repository passes three arguments to
the hook: the path to the repository, the path being unlocked, and the user attempting to remove the lock. If the
program returns a non-zero exit value, the unlock action is aborted and anything printed to stderr is marshalled
back to the client.

post - unl ock
This hook runs after a path is unlocked. The unlocked path is passed to the hook's stdin, and the hook aso re-
ceives two arguments: the path to the repository, and the user who removed the lock. The hook is then free to
send email notification or record the event in any way it chooses. Because the lock removal already happened,
the output of the hook isignored.

° Warning
Do not attempt to modify the transaction using hook scripts. A common example of this
would be to automatically set propertiessuch assvn: eol - styl e or svn: m ne-type
during the commit. While this might seem like a good ides, it causes problems. The main
problem is that the client does not know about the change made by the hook script, and
there is no way to inform the client that it is out-of-date. This inconsistency can lead to sur-
prising and unexpected behavior.

Instead of attempting to modify the transaction, it is much better to check the transaction in
thepr e- commi t hook and reject the commit if it does not meet the desired regquirements.

Subversion will attempt to execute hooks as the same user who owns the process which is accessing the
Subversion repository. In most cases, the repository is being accessed via Apache HTTP server and
mod_dav_svn, so this user is the same user that Apache runs as. The hooks themselves will need to be
configured with OS-level permissions that allow that user to execute them. Also, this means that any file
or programs (including the Subversion repository itself) accessed directly or indirectly by the hook will
be accessed as the same user. In other words, be aert to potential permission-related problems that could

76

Repository Administration

prevent the hook from performing the tasks you've written it to perform.

Berkeley DB Configuration

A Berkeley DB environment is an encapsulation of one or more databases, log files, region files and
configuration files. The Berkeley DB environment has its own set of default configuration values for
things like the number of database locks allowed to be taken out at any given time, or the maximum size
of the journaling log files, etc. Subversion's filesystem code additionally chooses default values for some
of the Berkeley DB configuration options. However, sometimes your particular repository, with its
unique collection of data and access patterns, might require a different set of configuration option val-
ues.

The folks at Sleepycat (the producers of Berkeley DB) understand that different databases have different
requirements, and so they have provided a mechanism for overriding at runtime many of the configura-
tion values for the Berkeley DB environment. Berkeley checks for the presence of a file named
DB_CONFI Gin each environment directory, and parses the options found in that file for use with that
particular Berkeley environment.

The Berkeley configuration file for your repository is located in the db environment directory, at r e-

pos/ db/ DB_CONFI G. Subversion itself creates this file when it creates the rest of the repository. The
fileinitially contains some default options, as well as pointers to the Berkeley DB online documentation
so you can read about what those options do. Of course, you are free to add any of the supported Berke-
ley DB options to your DB_CONFI Gfile. Just be aware that while Subversion never attempts to read or
interpret the contents of the file, and makes no use of the option settings in it, you'll want to avoid any
configuration changes that may cause Berkeley DB to behave in afashion that is unexpected by the rest
of the Subversion code. Also, changes made to DB_CONFI G won't take effect until you recover the
database environment (using svnadmin recover).

Repository Maintenance

Maintaining a Subversion repository can be a daunting task, mostly due to the complexities inherent in
systems which have a database backend. Doing the task well is all about knowing the tools—what they
are, when to use them, and how to use them. This section will introduce you to the repository adminis-
tration tools provided by Subversion, and how to wield them to accomplish tasks such as repository mi-
grations, upgrades, backups and cleanups.

An Administrator's Toolkit

Subversion provides a handful of utilities useful for creating, inspecting, modifying and repairing your
repository. Let's look more closely at each of those tools. Afterward, well briefly examine some of the
utilities included in the Berkeley DB distribution that provide functionality specific to your repository's
database backend not otherwise provided by Subversion's own tools.

svnlook

svnlook is atool provided by Subversion for examining the various revisions and transactions in a re-
pository. No part of this program attempts to change the repository—it's a “read-only” tool. svnlook is
typically used by the repository hooks for reporting the changes that are about to be committed (in the
case of the pre-commit hook) or that were just committed (in the case of the post-commit hook) to the
repository. A repository administrator may use thistool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnl ook hel p
general usage: svnl ook SUBCOMWAND REPOS PATH [ARGS & OPTIONS ...]

77

Not e: any subconmand which takes the '--revision' and '--transaction'
options will, if invoked w thout one of those options, act on
the repository's youngest revision.

Type "svnl ook hel p <subconmmand>" for help on a specific subconmand.

Nearly every one of svnlook's subcommands can operate on either arevision or a transaction tree, print-
ing information about the tree itself, or how it differs from the previous revision of the repository. Y ou
usethe--revisionand--transacti on optionsto specify which revision or transaction, respect-
ively, to examine. Note that while revision numbers appear as natural numbers, transaction names are al-
phanumeric strings. Keep in mind that the filesystem only allows browsing of uncommitted transactions
(transactions that have not resulted in a new revision). Most repositories will have no such transactions,
because transactions are usually either committed (which disqualifies them from viewing) or aborted
and removed.

In the absence of both the - -revi si on and - -transacti on options, svnlook will examine the
youngest (or “HEAD”) revision in the repository. So the following two commands do exactly the same
thing when 19 is the youngest revision in the repository located at / pat h/ t o/ r epos:

$ svnl ook info /path/tol/repos
$ svnlook info /path/to/repos --revision 19

The only exception to these rules about subcommands is the svnlook youngest subcommand, which
takes no options, and simply prints out the

Repository Administration

allows scripts and other wrappers around this command to make intelligent decisions about the log mes-
sage, such as how much memory to allocate for the message, or at least how many bytes to skip in the
event that this output is not the last bit of datain the stream.

Another common use of svnlook is to actually view the contents of a revision or transaction tree. The
svnlook tree command displays the directories and files in the requested tree. If you supply the -
- show- i ds option, it will also show the filesystem node revision |Ds for each of those paths (which is
generally of more use to developers than to users).

$ svnl ook tree /path/to/repos --showids
/ <0.0.1>
A <2.0.1>
B/ <4.0.1>
| ambda <5.0. 1>
E/ <6.0.1>
al pha <7.0.1>
beta <8.0. 1>
F/ <9.0.1>
mu <3.0. 1>
C <a.0.1>
D <b.0.1>
gama <c. 0. 1>
G <d.0.1>
pi <e.O0.1>
rho <f.0.1>
tau <g.0. 1>
H <h.0.1>
chi <i.0.1>
onega <k.O0.1>
psi <j.0.1>
iota <1.0.1>

Once you've seen the layout of directories and files in your tree, you can use commands like svnlook
cat, svnlook propget, and svnlook proplist to dig into the details of those files and directories.

svnlook can perform a variety of other queries, displaying subsets of bits of information we've men-
tioned previously, reporting which paths were modified in a given revision or transaction, showing tex-
tual and property differences made to files and directories, and so on. The following is a brief descrip-
tion of the current list of subcommands accepted by svnlook, and the output of those subcommands:

aut hor
Print the tree's author.

cat
Print the contents of afilein the tree.

changed
List all files and directories that changed in the tree.

dat e
Print the tree's datestamp.

di ff
Print unified diffs of changed files.

di r s- changed
List the directories in the tree that were themselves changed, or whose file children were changed.

hi story

79

Display interesting points in the history of a versioned path (places where modifications or copies occurred).

info
Print the tree's author, datestamp, 1og message character count, and og message.

| ock
If apath islocked, describe the lock attributes.

| og
Print the tree's log message.

pr opget
Print the value of a property on a path in the tree.

propli st
Print the names and values of properties set on pathsin the tree.

tree
Print the tree listing, optionally revealing the filesystem node revision | Ds associated with each path.

uui d
Print the repository's UUID— Universal Unique I Dentifier.

youngest
Print the youngest revision number.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to cre-
ate Subversion repositories, this program allows you to perform several maintenance operations on those
repositories. The syntax of svnadmin issimilar to that of svnlook:

$ svnadnin hel p
general usage: svnadnm n SUBCOMVAND REPOCS PATH [ARGS & OPTIONS ...]
Type "svnadm n hel p <subcommand>" for help on a specific subcommand.

Avai | abl e subcommands:
create
deltify
dunp

help (?, h)

We've already mentioned svnadmin's cr eat e subcommand (see the section called “Repository Cre-

Repository Administration

hot copy
Make a hot copy of arepository. Y ou can run this command at any time and make a safe copy of the repository,
regardlessif other processes are using the repository.

list-dbl ogs
(Berkeley DB repositories only.) List the paths of Berkeley DB log files associated with the repository. Thislist
includes all log files—those till in use by Subversion, as well as those no longer in use.

list-unused-dbl ogs
(Berkeley DB repositories only.) List the paths of Berkeley DB log files associated with, but no longer used by,
the repository. You may safely remove these log files from the repository layout, possibly archiving them for
use in the event that you ever need to perform a catastrophic recovery of the repository.

| oad
Load a set of revisions into a repository from a stream of data that uses the same portable dump format gener-
ated by the dunp subcommand.

I sl ocks
List and describe any locks that exist in the repository.

| st xns
List the names of uncommitted Subversion transactions that currently exist in the repository.

recover
Perform recovery steps on arepository that isin need of such, generally after afatal error has occurred that pre-
vented a process from cleanly shutting down its communication with the repository.

rm ocks
Unconditionally remove locks from listed paths.

rmt xns
Cleanly remove Subversion transactions from the repository (conveniently fed by output fromthel st xns sub-
command).

set | og
Replace the current value of the svn: | og (commit log message) property on a given revision in the repository
with anew value.

verify
Verify the contents of the repository. This includes, among other things, checksum comparisons of the ver-
sioned data stored in the repository.

svndumpfilter

Since Subversion stores everything in an opagque database system, attempting manual tweaks is unwise,
if not quite difficult. And once data has been stored in your repository, Subversion generally doesn't
provide an easy way to remove that data. 3 But inevitably, there will be times when you would like to
manipulate the history of your repository. Y ou might need to strip out all instances of afile that was ac-
cidentally added to the repository (and shouldn't be there for whatever reason). Or, perhaps you have
multiple projects sharing a single repository, and you decide to split them up into their own repositories.
To accomplish tasks like this, administrators need a more manageable and malleable representation of
the datain their repositories—the Subversion repository dump format.

The Subversion repository dump format is a human-readable representation of the changes that you've
made to your versioned data over time. You use the svnadmin dump command to generate the dump

3That, by the way, isafeature, not abug.

81

Repository Administration

data, and svhadmin load to populate a new repository with it (see the section called “Migrating a Re-
pository”). The great thing about the human-readability aspect of the dump format is that, if you aren't
careless about it, you can manualy inspect and modify it. Of course, the downside is that if you have
two years worth of repository activity encapsulated in what is likely to be a very large dump file, it
could take you along, long time to manually inspect and modify it.

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides
avery particular brand of useful functionality—the ability to quickly and easily modify that dump data
by acting as a path-based filter. Simply give it either alist of paths you wish to keep, or alist of paths
you wish to not keep, then pipe your repository dump data through this filter. The result will be a modi-
fied stream of dump data that contains only the versioned paths you (explicitly or implicitly) requested.

The syntax of svndumpfilter isasfollows:

$ svndunpfilter help
general usage: svndunpfilter SUBCOMVAND [ARGS & OPTIONS ...]
Type "svndunpfilter hel p <subcommand>" for help on a specific subcomrand.

Avai | abl e subcommands:
excl ude
i ncl ude
help (?, h)

There are only two interesting subcommands. They allow you to make the choice between explicit or
implicit inclusion of pathsin the stream:

excl ude
Filter out a set of paths from the dump data stream.

i ncl ude
Allow only the requested set of paths to pass through the dump data stream.

Let'slook arealistic example of how you might use this program. We discuss el sewhere (see the section
called “Choosing a Repository Layout”) the process of deciding how to choose a layout for the datain
your repositories—using one repository per project or combining them, arranging stuff within your re-
pository, and so on. But sometimes after new revisions start flying in, you rethink your layout and would
like to make some changes. A common change is the decision to move multiple projects which are shar-
ing asingle repository into separate repositories for each project.

Our imaginary repository contains three projects: cal ¢, cal endar, and spr eadsheet . They have
been living side-by-side in alayout like this:

cal ¢/
t runk/
br anches/
t ags/

cal endar/
t runk/
br anches/
t ags/

spr eadsheet/
trunk/
br anches/
t ags/

82

Repository Administration

To get these three projects into their own repositories, we first dump the whole repository:

svnadm n dunp /path/to/repos > repos-dunmpfile
Dunped revision 0.
Dunped revision 1.
Dunped revi sion 2.
Dunped revi sion 3.

* % X X Lp

o

Next, run that dump file through the filter, each time including only one of our top-level directories, and
resulting in three new dump files:

$ cat repos-dunpfile | svndunpfilter include calc > calc-dunpfile
$ cat repos-dunpfile | svndunmpfilter include cal endar > cal -dunpfile
$ cat repos-dunpfile | svndunpfilter include spreadsheet > ss-dunpfile

$

At this point, you have to make a decision. Each of your dump files will create a valid repository, but
will preserve the paths exactly as they were in the original repository. This means that even though you
would have arepository solely for your cal ¢ project, that repository would still have a top-level direct-
ory named cal c. If you want your t r unk, t ags, and br anches directories to live in the root of
your repository, you might wish to edit your dump files, tweaking the Node- pat h and Node-
copyf r om pat h headers to no longer have that first cal ¢/ path component. Also, you'll want to re-
move the section of dump data that createsthe cal ¢ directory. It will look something like:

Node- pat h: cal c
Node- acti on: add
Node- ki nd: dir
Content-length: O

° Warning
If you do plan on manually editing the dump file to remove a top-level directory, make
sure that your editor is not set to automatically convert end-lines to the native format (e.g.
\r\n to \n) as the content will then not agree with the metadata and this will render the
dump file useless.

All that remains now is to create your three new repositories, and load each dump file into the right re-
pository:

$ svnadm n create calc; svnadmin |oad calc < cal c-dunmpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : button.c ... done.

$ svnadnin create cal endar; svnadmin |oad cal endar < cal -dunpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.

83

* adding path : cal.c ... done.

$ svnadm n create spreadsheet; svnadm n | oad spreadsheet < ss-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.

* adding path : ss.c ... done.

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions.
If agiven revision contained only changes to paths that were filtered out, that now-empty revision could
be considered uninteresting or even unwanted. So to give the user control over what to do with those re-
visions, svndumpfilter provides the following command-line options:

--drop-enpty-revs

Do not generate empty revisions at all—just omit them.

--renumnber -revs

If empty revisions are dropped (using the - - dr op- enpt y- r evs option), change the revision numbers of the
remaining revisions so that there are no gaps in the numeric sequence.

- - preserve-revprops

If empty revisions are not dropped, preserve the revision properties (log message, author, date, custom proper-
ties, etc.) for those empty revisions. Otherwise, empty revisions will only contain the origina datestamp, and a
generated log message that indicates that this revision was emptied by svndumpfilter.

While svndumpfilter can be very useful, and a huge timesaver, there are unfortunately a couple of
gotchas. Firgt, this utility is overly sensitive to path semantics. Pay attention to whether paths in your
dump file are specified with or without leading slashes. You'll want to look at the Node- pat h and
Node- copyf rom pat h headers.

Node- pat h: spreadsheet/ Makefile

If the paths have leading slashes, you should include leading slashes in the paths you pass to svndump-
filter include and svndumpfilter exclude (and if they don't, you shouldn't). Further, if your dump file
has an inconsistent usage of leading slashes for some reason, 4 you should probably normalize those
paths so they all have, or lack, leading slashes.

Also, copied paths can give you some trouble. Subversion supports copy operations in the repository,
where a new path is created by copying some already existing path. It is possible that at some point in

*While svnadmin dump has a consistent leading slash policy—to not include them—other programs which generate dump data might not be so

consistent.

If you're using a Berkeley DB repository, then al of your versioned filesystem's structure and data live
in a set of database tables within the db subdirectory of your repository. This subdirectory is a regular
Berkeley DB environment directory, and can therefore be used in conjunction with any of the Berkeley
database tools (you can see the documentation for these tools at Sleepycat's website, ht-
tp://www.sleepycat.con).

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed
for Subversion repositories has been duplicated in the svnadmin tool. For example, svnadmin list-
unused-dblogs and svnadmin list-dblogs perform a subset of what is provided by the Berkeley
db_archive command, and svnadmin recover reflects the common use cases of the db_recover utility.

There are till afew Berkeley DB utilities that you might find useful. The db_dump and db_load pro-
grams write and read, respectively, a custom file format which describes the keys and values in a Berke-
ley DB database. Since Berkeley databases are not portable across machine architectures, thisformat isa
useful way to transfer those databases from machine to machine, irrespective of architecture or operating
system. Also, the db_stat utility can provide useful information about the status of your Berkeley DB
environment, including detailed statistics about the locking and storage subsystems.

Repository Cleanup

Your Subversion repository will generally require very little attention once it is configured to your lik-
ing. However, there are times when some manual assistance from an administrator might be in order.
The svnadmin utility provides some helpful functionality to assist you in performing such tasks as:

» modifying commit log messages,
» removing dead transactions,
» recovering “wedged” repositories, and

e migrating repository contents to a different repository.

Perhaps the most commonly used of svnadmin's subcommandsisset | og. When atransaction is com-
mitted to the repository and promoted to arevision, the descriptive log message associated with that new
revision (and provided by the user) is stored as an unversioned property attached to the revision itself. In
other words, the repository remembers only the latest value of the property, and discards previous ones.

Sometimes a user will have an error in her log message (a misspelling or some misinformation, per-
haps). If the repository is configured (using the pre-revprop-change and post-rev-
pr op- change hooks; see the section called “Hook Scripts’) to accept changes to this log message
after the commit is finished, then the user can “fix” her log message remotely using the svn program's
pr opset command (see Chapter 9, Subversion Complete Reference). However, because of the poten-
tial to lose information forever, Subversion repositories are not, by default, configured to allow changes
to unversioned properties—except by an administrator.

http://www.sleepycat.com/
http://www.sleepycat.com/

Repository Administration

triggered, and therefore must be setup to accept changes of this nature. But an administrator can get
around these protections by passing the - - bypass- hooks option to the svnadmin setlog command.

° Warning
Remember, though, that by bypassing the hooks, you are likely avoiding such things as
email notifications of property changes, backup systems which track unversioned property
changes, and so on. In other words, be very careful about what you are changing, and how

you changeit.

Another common use of svnadmin is to query the repository for outstanding—possibly
dead—Subversion transactions. In the event that a commit should fail, the transaction is usually cleaned
up. That is, the transaction itself is removed from the repository, and any data associated with (and only
with) that transaction is removed as well. Occasionally, though, a failure occurs in such a way that the
cleanup of the transaction never happens. This could happen for several reasons. perhaps the client oper-
ation was inelegantly terminated by the user, or a network failure might have occurred in the middle of
an operation, etc. Regardless of the reason, dead transactions can happen. They don't do any real harm,
other than consuming a small bit of disk space. A fastidious administrator may nonetheless want to re-
move them.

You can use svnadmin's| st xns command to list the names of the currently outstanding transactions.

$ svnadm n | stxns myrepos
19

3al

a45

$

Each item in the resultant output can then be used with svnlook (and its- -t r ansact i on option) to
determine who created the transaction, when it was created, what types of changes were made in the
transaction—in other words, whether or not the transaction is a safe candidate for removal! If so, the
transaction's name can be passed to svnadmin rmtxns, which will perform the cleanup of the transac-
tion. In fact, ther mt xns subcommand can take itsinput directly from the output of | st xns!

$ svnadm n rntxns nyrepos ~svhadmin | stxns myrepos’
$

If you use these two subcommands like this, you should consider making your repository temporarily in-
accessible to clients. That way, no one can begin a legitimate transaction before you start your cleanup.
The following is alittle bit of shell-scripting that can quickly generate information about each outstand-
ing transaction in your repository:

Example 5.1. txn-info.sh (Reporting Outstanding Transactions)

#!/ bi n/ sh

Cenerate informational output for all outstanding transactions in
a Subversion repository.

REPOS="${ 1} "

if ["x$REPCS" = x] ; then
echo "usage: $0 REPCS_PATH'
exit

86

Repository Administration

fi
for TXN in “svnadnin |stxns ${REPCS} " ; do

echo "---[Transaction ${TXN} J-------mmmmmmmmm oo -
svnl ook info "${REPOS}" --transaction "${TXN}"
done

Y ou can run the previous script using /path/to/txn-info.sh /path/to/r epos. The output is basically a con-
catenation of several chunks of svnlook info output (see the section called “svnlook™), and will look
something like:

$ txn-info.sh myrepos
---[Transaction 19 J-----------------““--““- oo

sally

2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)

0

---[Transaction 3@l J----------mmmm oo
harry

2001- 09- 10 16:50:30 -0500 (Mon, 10 Sep 2001)

39

Trying to commit over a faulty network.

---] Transaction adb J---------mmmm oo
sally

2001-09-12 11:09: 28 -0500 (Wed, 12 Sep 2001)

0

$

A long-abandoned transaction usually represents some sort of failed or interrupted commit. A transac-
tion's datestamp can provide interesting information—for example, how likely isit that an operation be-
gun nine months ago is till active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of informa-
tion—including Apache's error and access logs, the logs of successful Subversion commits, and so
on—can be employed in the decision-making process. Finally, an administrator can often simply com-
municate with a seemingly dead transaction's owner (via email, for example) to verify that the transac-
tionis, in fact, in azombie state.

Managing Disk Space

While the cost of storage has dropped incredibly in the past few years, disk usage is till avalid concern
for administrators seeking to version large amounts of data. Every additional byte consumed by the live
repository is a byte that needs to be backed up offsite, perhaps multiple times as part of rotating backup
schedules. If using a Berkeley DB repository, the primary storage mechanism is a complex database sys-
tem, it is useful to know what pieces of data need to remain on the live site, which need to be backed up,
and which can be safely removed. This section is specific to Berkeley DB; FSFS repositories have no
extradata to be cleaned up or reclaimed.

Until recently, the largest offender of disk space usage with respect to Subversion repositories was the
log files to which Berkeley DB performs its pre-writes before modifying the actual database files. These
files capture al the actions taken along the route of changing the database from one state to anoth-
er—while the database files reflect at any given time some state, the log files contain al the many
changes along the way between states. As such, they can start to accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the ability to
remove its own unused log files without any external procedures. Any repositories created using an svn-
admin which is compiled against Berkeley DB version 4.2 or greater will be configured for this auto-

87

matic log file removal. If you don't want this feature enabled, smply pass the - - bdb- | og- keep op-
tion to the svnadmin create command. If you forget to do this, or change your mind at a later time,
simple edit the DB_CONFI G file found in your repository's db directory, comment out the line which
containstheset _fl ags DB _LOG AUTOREMOVE directive, and then run svnadmin recover on your
repository to force the configuration changes to take effect. See the section called “Berkeley DB Config-
uration” for more information about database configuration.

Without some sort of automatic log file removal in place, log files will accumulate as you use your re-
pository. Thisis actually somewhat of afeature of the database system—you should be able to recreate
your entire database using nothing but the log files, so these files can be useful for catastrophic database
recovery. But typically, you'll want to archive the log files that are no longer in use by Berkeley DB, and
then remove them from disk to conserve space. Use the svnadmin list-unused-dblogs command to list
the unused log files:

$ svnadm n |ist-unused-dbl ogs /path/to/repos

/ pat h/t o/ repos/| og. 0000000031

/ pat h/t o/ repos/| og. 0000000032

/ path/to/repos/| og. 0000000033

$ svnadm n |ist-unused-dbl ogs /path/to/repos | xargs rm
di sk space recl ai med!

To keep the size of the repository as small as possible, Subversion uses deltification (or, “deltified stor-
age”) within the repository itself. Deltification involves encoding the representation of a chunk of data
as acollection of differences against some other chunk of data. If the two pieces of data are very similar,
this ddltification results in storage savings for the deltified chunk—rather than taking up space equal to
the size of the original data, it only takes up enough space to say, “I look just like this other piece of data
over here, except for the following couple of changes’. Specifically, each time a new version of afileis

information.)

SE.g.: hard drive + huge electromagnet = disaster.

The most common reason to dump and load a Subversion repository is due to changes in Subversion it-
self. As Subversion matures, there are times when certain changes made to the back-end database
schema cause Subversion to be incompatible with previous versions of the repository. Other reasons for
dumping and loading might be to migrate a Berkeley DB repository to anew OS or CPU architecture, or
to switch between Berkeley DB and FSFS back-ends. The recommended course of action is relatively
simple:

1. Using your current version of svnadmin, dump your repositories to dump files.
2. Upgrade to the new version of Subversion.

3. Move your old repositories out of the way, and create new empty ones in their place using your
new svhadmin.

4. Again using your new svnadmin, load your dump files into their respective, just-created repositor-
ies.

5. Be sure to copy any customizations from your old repositories to the new ones, including
DB_CONFI Gfiles and hook scripts. You'll want to pay attention to the release notes for the new re-
lease of Subversion to see if any changes since your last upgrade affect those hooks or configura-
tion options.

6. If the migration process made your repository accessible at a different URL (e.g. moved to a differ-
ent computer, or is being accessed via a different schema), then you'll probably want to tell your
usersto run svn switch --relocate on their existing working copies. See svn switch.

svnadmin dump will output a range of repository revisions that are formatted using Subversion's cus-
tom filesystem dump format. The dump format is printed to the standard output stream, while informat-
ive messages are printed to the standard error stream. This allows you to redirect the output stream to a
file while watching the status output in your terminal window. For example:

$ svnl ook youngest nyrepos

26

svnadmi n dunp nyrepos > dunpfile
Dunped revision O.

Dunped revision 1.

Dunped revision 2.

* X X LH

*

Dunped revision 25.
* Dunped revision 26.

At the end of the process, you will have asingle file (dunpf i | e in the previous example) that contains
all the data stored in your repository in the requested range of revisions. Note that svnadmin dump is
reading revision trees from the repository just like any other “reader” process would (svn checkout, for
example). So it's safe to run this command at any time.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion re-

pository dump file, and effectively replays those dumped revisions into the target repository for that op-
eration. It also gives informative feedback, this time using the standard output stream:

$ svnadm n | oad new epos < dunpfile

Repository Administration

------- Conmitted newrev 1 (loaded fromoriginal rev 1) >>>

<<< Started new txn, based on original revision 2
* editing path : A'nmu ... done.
* editing path : ADGrho ... done.

——————— Conmitted new rev 2 (loaded fromoriginal rev 2) >>>

<<< Started new txn, based on original revision 25
* editing path : A/D/gamma ... done.

------- Committed new rev 25 (loaded fromoriginal rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/zeta ... done.
* editing path : A'nu ... done.

——————— Conmitted new rev 26 (loaded fromoriginal rev 26) >>>

The result of aload is new revisions added to a repository—the same thing you get by making commits
against that repository from a regular Subversion client. And just as in a commit, you can use hook
scripts to perform actions before and after each of the commits made during aload process. By passing
the- - use- pre-conmit - hook and - - use- post - commi t - hook options to svnadmin load, you
can instruct Subversion to execute the pre-commit and post-commit hook scripts, respectively, for each
loaded revision. Y ou might use these, for example, to ensure that loaded revisions pass through the same
validation steps that regular commits pass through. Of course, you should use these options with
care—if your post-commit hook sends emailsto amailing list for each new commit, you might not want
to spew hundreds or thousands of commit emailsin rapid succession at that list for each of the loaded re-
visions! Y ou can read more about the use of hook scriptsin the section called “Hook Scripts’.

Note that because svnadmin uses standard input and output streams for the repository dump and load
process, people who are feeling especially saucy can try things like this (perhaps even using different
versions of svnadmin on each side of the pipe):

$ svnadnin create new epos .
$ svnadmi n dunp nyrepos | svnadmi n | oad new epos

By default, the dump file will be quite large—much larger than the repository itself. That's because
every version of every fileis expressed as afull text in the dump file. Thisis the fastest and simplest be-
havior, and nice if you're piping the dump data directly into some other process (such as a compression
program, filtering program, or into aloading process). But if you're creating a dump file for longer-term
storage, you'll likely want to save disk space by using the - - del t as switch. With this option, success-
ive revisions of fileswill be output as compressed, binary differences—just asfile revisions are stored in
arepository. This option is slower, but results in a dump file much closer in size to the original reposit-
ory.

We mentioned previously that svnadmin dump outputs arange of revisions. Usethe- - r evi si on op-
tion to specify a single revision to dump, or a range of revisions. If you omit this option, all the existing
repository revisions will be dumped.

$ svnadmi n dunp nyrepos --revision 23 > rev-23.dunpfile
$ svnadm n dunp nyrepos --revision 100: 200 > revs-100-200. dunmpfile

91

Repository Administration

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to
re-create that revision based on the previous one. In other words, for any given revision in the dump file,
only the items that were changed in that revision will appear in the dump. The only exception to this rule
isthefirst revision that is dumped with the current synadmin dump command.

By default, Subversion will not express the first dumped revision as merely differences to be applied to
the previous revision. For one thing, there is no previous revision in the dump file! And secondly, Sub-
version cannot know the state of the repository into which the dump data will be loaded (if it ever, in
fact, occurs). To ensure that the output of each execution of svnadmin dump is self-sufficient, the first
dumped revision is by default a full representation of every directory, file, and property in that revision
of the repository.

However, you can change this default behavior. If you add the - - i ncr enent al option when you
dump your repository, svnadmin will compare the first dumped revision against the previous revision in
the repository, the same way it treats every other revision that gets dumped. It will then output the first
revision exactly as it does the rest of the revisions in the dump range—mentioning only the changes that
occurred in that revision. The benefit of thisis that you can create several small dump files that can be
loaded in succession, instead of one large one, like so:

$ svnadm n dunp nyrepos --revision 0:1000 > dunpfilel
$ svnadm n dunp nyrepos --revision 1001: 2000 --1ncremental > dunpfile2
$ svnadm n dunp nyrepos --revision 2001: 3000 --incremental > dunpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadm n | oad new epos < dunpfilel
$ svnadm n | oad new epos < dunpfile2
$ svnadmi n | oad new epos < dunpfile3

Another neat trick you can perform with this - - i ncr enent al option involves appending to an exist-
ing dump file a new range of dumped revisions. For example, you might have a post - conmi t hook
that simply appends the repository dump of the single revision that triggered the hook. Or you might
have a script that runs nightly to append dump file data for all the revisions that were added to the repos-
itory since the last time the script ran. Used like this, svnadmin’'s dunp and | oad commands can be a
valuable means by which to backup changes to your repository over time in case of a system crash or
some other catastrophic event.

The dump format can also be used to merge the contents of several different repositoriesinto asingle re-
pository. By using the - - par ent - di r option of svnadmin load, you can specify a new virtual root
directory for the load process. That means if you have dump files for three repositories, say cal c-
dunpfile,cal -dunpfil e,andss-dunpfil e, you can first create a new repository to hold them
al:

$ svnadm n create /path/to/projects

Then, make new directories in the repository which will encapsulate the contents of each of the three
previous repositories:

$ svn nkdir -m"Initial project roots" \
file://lpath/tolprojects/calc \
file://lpath/tolprojects/cal endar \
file:///path/tolprojects/spreadsheet

92

Repository Administration

Committed revision 1.

Lastly, load the individual dump files into their respective locations in the new repository:

$ svnadmn |l oad /path/to/projects --parent-dir calc < cal c-dunpfile
$ svnadnin | oad /path/to/projects --parent-dir cal endar < cal -dunpfile
$ svnadmin | oad /path/to/projects --parent-dir spreadsheet < ss-dunmpfile

WEe'll mention one final way to use the Subversion repository dump format—conversion from a different
storage mechanism or version control system altogether. Because the dump file format is, for the most
part, human-readable, 6 it should be rel atively easy to describe generic sets of changes—each of which
should be treated as a new revision—using this file format. In fact, the cvs2svn utility (see the section
called “Converting a Repository from CV'S to Subversion”) uses the dump format to represent the con-
tents of a CV S repository so that those contents can be copied into a Subversion repository.

Repository Backup

Despite numerous advances in technology since the birth of the modern computer, one thing unfortu-
nately rings true with crystalline clarity—sometimes, things go very, very awry. Power outages, network
connectivity dropouts, corrupt RAM and crashed hard drives are but a taste of the evil that Fate is poised
to unleash on even the most conscientious administrator. And so we arrive at a very important top-
ic—how to make backup copies of your repository data.

There are generally two types of backup methods available for Subversion repository administrat-
ors—incremental and full. We discussed in an earlier section of this chapter how to use svnadmin
dump --incremental to perform an incremental backup (see the section called “Migrating a
Repository”). Essentially, the idea is to only backup at a given time the changes to the repository since
the last time you made a backup.

A full backup of the repository is quite literally a duplication of the entire repository directory (which in-
cludes either Berkeley database or FSFS environment). Now, unless you temporarily disable all other
access to your repository, simply doing a recursive directory copy runs the risk of generating a faulty
backup, since someone might be currently writing to the database.

In the case of Berkeley DB, Sleepycat documents describe a certain order in which database files can be
copied that will guarantee a valid backup copy. And a similar ordering exists for FSFS data. Better till,
you don't have to implement these algorithms yourself, because the Subversion development team has
aready done so. The hot-backup.py script is found in thet ool s/ backup/ directory of the Subver-
sion source distribution. Given a repository path and a backup location, hot-backup.py—which isreally
just a more intelligent wrapper around the svnadmin hotcopy command—will perform the necessary
steps for backing up your live repository—without requiring that you bar public repository access at
all—and then will clean out the dead Berkeley log files from your live repository.

Even if you also have an incremental backup, you might want to run this program on aregular basis. For
example, you might consider adding hot-backup.py to a program scheduler (such as cron on Unix sys-
tems). Or, if you prefer fine-grained backup solutions, you could have your post-commit hook script call
hot-backup.py (see the section called “Hook Scripts”), which will then cause a new backup of your re-
pository to occur with every new revision created. Simply add the following to the hooks/
post - commi t script in your live repository directory:

5The Subversion repository dump format resembles an RFC-822 format, the same type of format used for most email.

93

Repository Administration

(cd /path/to/ hook/scripts; ./hot-backup.py ${REPCS} /path/to/backups &)

The resulting backup is a fully functional Subversion repository, able to be dropped in as a replacement
for your live repository should something go horribly wrong.

There are benefits to both types of backup methods. The easiest is by far the full backup, which will al-
ways result in a perfect working replica of your repository. This again means that should something bad
happen to your live repository, you can restore from the backup with a simple recursive directory copy.
Unfortunately, if you are maintaining multiple backups of your repository, these full copies will each eat
up just as much disk space as your live repository.

Incremental backups using the repository dump format are excellent to have on hand if the database
schema changes between successive versions of Subversion itself. Since a complete repository dump
and load are generally required to upgrade your repository to the new schema, it's very convenient to
already have half of that process (the dump part) finished. Unfortunately, the creation of—and restora-
tion from—incremental backups takes longer, as each commit is effectively replayed into either the
dump file or the repository.

In either backup scenario, repository administrators need to be aware of how modifications to unver-
sioned revision properties affect their backups. Since these changes do not themselves generate new re-
visions, they will not trigger post-commit hooks, and may not even trigger the pre-revprop-change and
post-revprop-change hooks. " And since you can change revision properties without respect to chronolo-
gical order—you can change any revision's properties at any time—an incremental backup of the latest
few revisions might not catch a property modification to a revision that was included as part of a previ-
ous backup.

Generally speaking, only the truly paranoid would need to backup their entire repository, say, every time
a commit occurred. However, assuming that a given repository has some other redundancy mechanism
in place with relatively fine granularity (like per-commit emails), a hot backup of the database might be
something that a repository administrator would want to include as part of a system-wide nightly
backup. For most repositories, archived commit emails alone provide sufficient redundancy as restora-
tion sources, at least for the most recent few commits. But it's your data—protect it as much as you'd
like.

Often, the best approach to repository backups is a diversified one. You can leverage combinations of
full and incremental backups, plus archives of commit emails. The Subversion developers, for example,
back up the Subversion source code repository after every new revision is created, and keep an archive
of al the commit and property change notification emails. Y our solution might be similar, but should be
catered to your needs and that delicate balance of convenience with paranoia. And while all of this might
not save your hardware from the iron fist of Fate, 8t should certai nly help you recover from those trying
times.

Adding Projects

Once your repository is created and configured, all that remainsisto begin using it. If you have a collec-
tion of existing data that is ready to be placed under version control, you will more than likely want to
use the svn client program'si nport subcommand to accomplish that. Before doing this, though, you
should carefully consider your long-term plans for the repository. In this section, we will offer some ad-
vice on how to plan the layout of your repository, and how to get your data arranged in that layout.

’svnadmin setlog can be called in away that bypasses the hook interface altogether.
8y ou know—the collective term for all of her “fickle fingers’.

94

Choosing a Repository Layout

While Subversion allows you to move around versioned files and directories without any loss of inform-
ation, doing so can still disrupt the workflow of those who access the repository often and come to ex-
pect things to be at certain locations. Try to peer into the future a bit; plan ahead before placing your
data under version control. By “laying out” the contents of your repositories in an effective manner the
first time, you can prevent aload of future headaches.

There are a few things to consider when setting up Subversion repositories. Let's assume that as reposit-
ory administrator, you will be responsible for supporting the version control system for several projects.
The first decision is whether to use a single repository for multiple projects, or to give each project its
own repository, or some compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of duplic-
ated maintenance. A single repository means that there is one set of hook scripts, one thing to routinely
backup, one thing to dump and load if Subversion releases an incompatible new version, and so on.
Also, you can move data between projects easily, and without losing any historical versioning informa-
tion.

The downside of using a single repository is that different projects may have different commit mailing
lists or different authentication and authorization requirements. Also, remember that Subversion uses re-
pository-global revision numbers. Some folks don't like the fact that even though no changes have been
made to their project lately, the youngest revision number for the repository keeps climbing because oth-
er projects are actively adding new revisions.

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they re-
late to each other. Y ou might have a few repositories with a handful of projectsin each repository. That
way, projects that are likely to want to share data can do so easily, and as new revisions are added to the
repository, at least the developers know that those new revisions are at least remotely related to every-
one who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think
about directory hierarchies in the repositories themselves. Because Subversion uses regular directory
copies for branching and tagging (see Chapter 4, Branching and Merging), the Subversion community
recommends that you choose a repository location for each project root—the “top-most” directory
which contains data related to that project—and then create three subdirectories beneath that root:
t r unk, meaning the directory under which the main project development occurs; br anches

*Thet r unk, t ags, and br anches trio are sometimes referred to as “the TTB directories”.

Note that it doesn't matter where in your repository each project root is. If you have only one project per

Repository Administration

ébmritted revi sion 1.
$cd ..

$rm-rf tnpdir

$

Y ou can verify the results of the import by running the svn list command:

$ svn list --verbose file:///path/tol/repos
1 harry May 08 21:48 projectA
1 harry May 08 21:48 projectB/

Once you have your skeletal layout in place, you can begin importing actual project data into your re-
pository, if any such data exists yet. Once again, there are several ways to do this. Y ou could use the svn
import command. You could checkout a working copy from your new repository, move and arrange
project data inside the working copy, and use the svn add and svn commit commands. But once we
start talking about such things, we're no longer discussing repository administration. If you aren't already
familiar with the svn client program, see Chapter 3, Guided Tour.

Summary

By now you should have a basic understanding of how to create, configure, and maintain Subversion re-
positories. We've introduced you to the various tools that will assist you with this task. Throughout the
chapter, we've noted common administration pitfalls, and suggestions for avoiding them.

All that remains is for you to decide what exciting data to store in your repository, and finaly, how to
make it available over a network. The next chapter is all about networking.

97

Chapter 6. Server Configuration

A Subversion repository can be accessed simultaneously by clients running on the same machine on
which the repository resides using thefi | e: / // method. But the typical Subversion setup involves a
single server machine being accessed from clients on computers al over the office—or, perhaps, all over
the world.

This section describes how to get your Subversion repository exposed outside its host machine for use
by remote clients. We will cover Subversion's currently available server mechanisms, discussing the
configuration and use of each. After reading this section, you should be able to decide which networking
setup is right for your needs, and understand how to enable such a setup on your host computer.

Overview

Subversion was designed with an abstract network layer. This means that a repository can be program-
matically accessed by any sort of server process, and the client “repository access’ APl allows program-
mers to write plugins that speak relevant network protocols. In theory, Subversion can use an infinite
number of network implementations. In practice, there are only two servers at the time of writing.

Apache is an extremely popular webserver; using the mod_dav_svn module, Apache can access a re-
pository and make it available to clients via the WebDAV/DeltaV protocol, which is an extension of
HTTP. In the other corner is svnserve: a small, standalone server program that speaks a custom protocol
with clients. Table 6-1 presents a comparison of the two servers.

Note that Subversion, as an open-source project, does not officially endorse any server as “primary” or
“official”. Neither network implementation is treated as a second-class citizen; each server has advant-
ages and disadvantages. In fact, it's possible for different serversto run in parallel, each accessing your
repositories in its own way, and each without hindering the other (see the section called “ Supporting
Multiple Repository Access Methods’). Table 6.1, “Network Server Comparison” gives a brief over-
view and comparison of the two available Subversion servers—as an administrator, it's up to you to
choose whatever works best for you and your users.

Table 6.1. Network Server Comparison

Feature

Apache + mod_dav_svn svnserve

Authentication options

Server Configuration

Network Model

This section is a general discussion of how a Subversion client and server interact with one another, re-
gardless of the network implementation you're using. After reading, you'll have a good understanding of
how a server can behave and the different ways in which a client can be configured to respond.

Requests and Responses

The Subversion client spends most of its time managing working copies. When it needs information
from arepository, however, it makes a network request, and the server responds with an appropriate an-
swer. The details of the network protocol are hidden from the user; the client attempts to access a URL,
and depending on the URL schema, a particular protocol is used to contact the server (see Repository
URLS). Users can run svn --version to see which URL schemas and protocols the client knows how to
use.

When the server process receives a client request, it typically demands that the client identify itself. It is-
sues an authentication challenge to the client, and the client responds by providing credentials back to
the server. Once authentication is complete, the server responds with the original information the client
asked for. Notice that this system is different from systems like CV'S, where the client pre-emptively of-
fers credentials (“logs in”) to the server before ever making a request. In Subversion, the server “pulls’
credentials by challenging the client at the appropriate moment, rather than the client “pushing” them.
This makes certain operations more elegant. For example, if a server is configured to allow anyone in
the world to read a repository, then the server will never issue an authentication challenge when a client
attemptsto svn checkout.

If the client's network request writes new data to the repository (e.g. svn commit), then a new revision
tree is created. If the client's request was authenticated, then the authenticated user's name is stored as
the value of the svn: aut hor property on the new revision (see the section called “Unversioned Prop-
erties’). If the client was not authenticated (in other words, the server never issued an authentication
challenge), then therevision'ssvn: aut hor property is empty. 1

Client Credentials Caching

Many servers are configured to require authentication on every request. This can become a big annoy-
ance to users, who are forced to type their passwords over and over again.

Happily, the Subversion client has aremedy for this: a built-in system for caching authentication creden-
tials on disk. By default, whenever the command-line client successfully responds to a server's authen-
tication challenge, it saves the credentials in the user's private runtime configuration area—in
~/ . subver si on/ aut h/ on Unix-like systems or %APPDATA% Subver si on/ aut h/ on Win-
dows. (The runtime area is covered in more detail in the section called “ Runtime Configuration Area’.)
Successful credentials are cached on disk, keyed on a combination of hostname, port, and authentication
realm.

When the client receives an authentication challenge, it first looks for the appropriate credentials in the
user's disk cache; if not present, or if the cached credentials fail to authenticate, then the client simply
prompts the user for the information.

Security-conscious people may be thinking to themselves, “ Caching passwords on disk? That's terrible!
Y ou should never do that!” Please remain calm, it's not as dangerous asit sounds.

e Theaut h/ caching areais permission-protected so that only the user (owner) can read data from it,
not the world at large. The operating system's own file permissions are protecting the password.

This problem is actually a FAQ, resulting from a misconfigured server setup.

99

Server Configuration

» On Windows 2000 and later, the Subversion client uses standard Windows cryptography services to
encrypt the password on disk. Because the encryption key is managed by Windows and is tied to the
user's own login credentials, only the user can decrypt the cached password. (Note: if the user's Win-
dows account password is reset by an administrator, al of the cached passwords become undecipher-
able. The Subversion client will behave as if they don't exist, prompting for passwords when re-
quired.)

» For the truly paranoid willing to sacrifice al convenience, it's possible to disable credential caching
atogether.

To disable caching for a single command, passthe - - no- aut h- cache option:

$ svn commit -F log meg.txt --no-auth-cache

Aut henti cation realm <svn://host.exanpl e.com 3690> exanple realm
User nanme: joe
Password for '

j oe':
Addi ng newfile

Transmitting file data .
Committed revision 2324.

password was not cached, so a second comit still pronpts us

$ svn delete newfile

$ svn conmit -F new nsg.txt

Aut hentication realm <svn://host.exanpl e.com 3690> exanple realm
User nanme: joe

Or, if you want to disable credential caching permanently, you can edit your runtime confi g file
(located next to the aut h/ directory). Simply set st or e- aut h- cr eds to no, and no credentials will
be cached on disk, ever.

[aut h]
store-auth-creds = no

Sometimes users will want to remove specific credentials from the disk cache. To do this, you need to
navigate into the aut h/ area and manually delete the appropriate cache file. Credentials are cached in
individua files; if you look inside each file, you will see keys and values. The svn: real nstri ng
key describes the particular server realm that the file is associated with:

$ |'s ~/.subversion/auth/svn. sinple/
5671adf 2865e267db74f 09ba6f 872c28
3893ed123b39500bca8a0b382839198e
5¢3c22968347b390f 349f f 340196ed39

$ cat ~/.subversion/auth/svn. sinpl e/ 5671adf 2865e267db74f 09ba6f 872c28

K 8
user nane
V 3
j oe
K 8
passwor d
V 4
bl ah

100

K 15

svn:real mstring

V 45

<https://svn. domai n.com 443> Joe's repository
END

Once you have located the proper cache file, just deleteiit.

One last word about client authentication behavior: a bit of explanation about the - - user nanme and -

- passwor d options is needed. Many client subcommands accept these options; however it is import-
ant to understand using these options does not automatically send credentials to the server. As discussed
earlier, the server “pulls’ credentials from the client when it deems necessary; the client cannot “push”
them at will. If a username and/or password are passed as options, they will only be presented to the
server if the server requests them. 2 Typically, these options are used when:

» the user wants to authenticate as a different user than her system login name, or
e ascript wants to authenticate without using cached credentials.

Here isafinal summary that describes how a Subversion client behaves when it receives an authentica-
tion challenge:

1. Check whether the user specified any credentials as command-line options, via- - user nane and/
or - - passwor d. If not, or if these options fail to authenticate successfully, then

2. Look up the server'srealm in the runtime aut h/ area, to seeif the user already has the appropriate
credentials cached. If not, or if the cached credentials fail to authenticate, then

3. Resort to prompting the user.

If the client successfully authenticates by any of the methods listed above, it will attempt to cache the
credentials on disk (unless the user has disabled this behavior, as mentioned earlier).

2Agai n, a common mistake is to misconfigure a server so that it never issues an authentication challenge. When users pass - - user nane and -
- passwor d options to the client, they're surprised to see that they're never used, i.e. new revisions still appear to have been committed anonym-

ously!

Server Configuration

$ svnserve -i
(success (1 2 (ANONYMOUS) (edit-pipeline)))

When invoked with the - - i net d option, svnserve attempts to speak with a Subversion client via stdin
and stdout using a custom protocol. Thisis the standard behavior for a program being run viainetd. The
IANA has reserved port 3690 for the Subversion protocol, so on a Unix-like system you can add lines to
/ et c/ servi ces likethese (if they don't aready exist):

svn 3690/ tcp # Subversion
svn 3690/ udp # Subversion

And if your system is using a classic Unix-like inetd daemon, you can add this line to /
etc/inetd. conf:

svn streamtcp nowait svnowner /usr/bin/svnserve svnserve -i

Make sure “svnowner” is a user which has appropriate permissions to access your repositories. Now,
when a client connection comes into your server on port 3690, inetd will spawn an svnserve process to
serviceit.

On a Windows system, third-party tools exist to run svnserve as a service. Look on Subversion's web-
sitefor alist of these tools.

A second option isto run svnser ve as a standalone “daemon” process. Use the - d option for this:

$ svnserve -d
svnserve is now running, listening on port 3690

When running svnserve in daemon mode, you can use the --listen-port= and -
-1 i st en- host = options to customize the exact port and hostname to “bind” to.

There's still athird way to invoke svnserve, and that's in “tunnel mode”, with the - t option. This mode
assumes that a remote-service program such as RSH or SSH has successfully authenticated a user and is
now invoking a private svnserve process as that user. The svnserve program behaves normally
(communicating via stdin and stdout), and assumes that the traffic is being automatically redirected over
some sort of tunnel back to the client. When svnserveisinvoked by atunnel agent like this, be sure that
the authenticated user has full read and write access to the repository database files. (See Servers and
Permissions: A Word of Warning.) It's essentially the same as a local user accessing the repository via
file:/// URLs.

Serversand Permissions: A Word of Warning

First, remember that a Subversion repository is a collection of database files; any process which accesses the
repository directly needs to have proper read and write permissions on the entire repository. If you're not care-
ful, this can lead to a number of headaches, especialy if you're using a Berkeley DB database rather than
FSFS. Be sure to read the section called “ Supporting Multiple Repository Access Methods’.

Secondly, when configuring svnserve, Apache httpd, or any other server process, keep in mind that you
might not want to launch the server process as the user r oot (or as any other user with unlimited permis-
sions). Depending on the ownership and permissions of the repositories you're exporting, it's often prudent to
use a different—perhaps custom—user. For example, many administrators create a new user named svn,

102

grant that user exclusive ownership and rights to the exported Subversion repositories, and only run their serv-
er processes as that user.

Once the svnserve program is running, it makes every repository on your system available to the net-
work. A client needs to specify an absolute path in the repository URL. For example, if arepository is
located at /usr/local/repositories/projectl, then a client would reach it via
svn:// host. exanpl e. com usr/ | ocal /repositories/projectl .Toincrease security,
you can passthe - r option to svnserve, which restricts it to exporting only repositories below that path:

$ svnserve -d -r /usr/local/repositories

Using the - r option effectively modifies the location that the program treats as the root of the remote
filesystem space. Clients then use URLs that have that path portion removed from them, leaving much
shorter (and much less revealing) URLs:

$ svn checkout svn://host.exanpl e.com projectl

Built-in authentication and authorization

When aclient connects to an svnserve process, the following things happen:

» Theclient selects a specific repository.

» The server processes the repository's conf / svnser ve. conf file, and begins to enforce any au-
thentication and authorization policies defined therein.

» Depending on the situation and authorization policies,

« the client may be allowed to make reguests anonymously, without ever receiving an authentica-
tion challenge, OR

« theclient may be challenged for authentication at any time, OR

o if operating in “tunnel mode”, the client will declare itself to be already externally authenticated.

At the time of writing, the server only knows how to send a CRAM-MD5

3See RFC 2195,

Server Configuration

ets ([and]), comments begin with hashes (#), and each section contains specific variables that can be
set (vari abl e = val ue). Let'swalk through thisfile and learn how to use them.

Create a 'users' file and realm

For now, the [gener al] section of the svnser ve. conf has al the variables you need. Begin by
defining a file which contains usernames and passwords, and an authentication realm:

[general] .
password-db = userfile
real m = exanple realm

The r eal mis a name that you define. It tells clients which sort of “authentication namespace” they're
connecting to; the Subversion client displays it in the authentication prompt, and uses it as a key (along
with the server's hostname and port) for caching credentials on disk (see the section called “Client Cre-
dentials Caching”). The passwor d- db variable points to a separate file that contains a list of user-
names and passwords, using the same familiar format. For example:

[users]
harry = foopassword
sally = barpassword

The value of passwor d- db can be an absolute or relative path to the users file. For many admins, it's
easy to keep the file right in the conf / area of the repository, alongside svnser ve. conf. On the
other hand, it's possible you may want to have two or more repositories share the same users file; in that
case, the file should probably live in a more public place. The repositories sharing the users file should
also be configured to have the same realm, since the list of users essentially defines an authentication
realm. Wherever the file lives, be sure to set the file's read and write permissions appropriately. If you
know which user(s) svnserve will run as, restrict read access to the user file as necessary.

Set access controls

There are two more variab