

INSTITUTO DE ESTUDIOS DE POSTGRADO MÁSTER UNIVERSITARIO EN BIOTECNOLOGÍA Curso 2016/17

Asignatura: BIOTECNOLOGÍA DE LEVADURAS Y MICROALGAS

DATOS DE LA ASIGNATURA

Denominación: BIOTECNOLOGÍA DE LEVADURAS Y MICROALGAS

Código: 103086

Plan de estudios: MÁSTER UNIVERSITARIO EN BIOTECNOLOGÍA Curso: 1

Créditos ECTS: 4 Horas de trabajo presencial: 30 Porcentaje de presencialidad: 30% Horas de trabajo no presencial: 70

Plataforma virtual: http://www3.uco.es/moodlemap/espacio_grados.html

DATOS DEL PROFESORADO

Nombre: FERNANDEZ REYES, EMILIO

Centro: Facultad de Ciencias

Departamento: BIOQUÍMICA Y BIOLOGÍA MOLECULAR

área: BIOQUÍMICA Y BIOLOGÍA MOLECULAR

Ubicación del despacho: Edificio Severo Ochoa. Planta baja. Campus de Rabanales **e-Mail:** bb1feree@uco.es **Teléfono:** 957218591

Nombre: GALVAN CEJUDO, AURORA

Centro: Edificio Severo Ochoa. Planta baja. Campus de Rabanales

Departamento: BIOQUÍMICA Y BIOLOGÍA MOLECULAR

área: BIOQUÍMICA Y BIOLOGÍA MOLECULAR

Ubicación del despacho: Edificio Severo Ochoa. Planta baja. Campus de Rabanales **e-Mail:** bb1gacea@uco.es **Teléfono:** 957218591

Nombre: GARCIA GARCIA, ISIDORO

Centro: Facultad de Ciencias

Departamento: QUÍMICA INORGÁNICA E INGENIERÍA QUÍMICA

área: INGENIERÍA QUÍMICA

Ubicación del despacho: Edificio Marie Curie. Planta baja. Campus de Rabanales **e-Mail:** iq1gagai@uco.es **Teléfono:** 957218589

Nombre: GARCIA MAURICIO, JUAN CARLOS

Centro: Facultad de Ciencias **Departamento:** MICROBIOLOGÍA

área: MICROBIOLOGÍA

Ubicación del despacho: Edificio Severo Ochoa. Planta baja. Campus de Rabanales **e-Mail:** mi1gamaj@uco.es **Teléfono:** 957218640

Nombre: GARCÍA MARTÍNEZ. MARÍA TERESA

Centro: Facultad de Ciencias **Departamento:** MICROBIOLOGÍA

área: MICROBIOLOGÍA

Ubicación del despacho: Edificio Severo Ochoa. Planta baja. Campus de Rabanales

e-Mail: mi2gamam@uco.es Teléfono: 957218640

REQUISITOS Y RECOMENDACIONES

Requisitos previos establecidos en el plan de estudios

Ninguno.

Recomendaciones

Ninguna especificada.

OBJETIVOS

- Familiarizarse con las principales propiedades de las levaduras y microalgas que las capacitan para desarrollar aplicaciones biotecnológicas.
- Conocer las estrategias moleculares, genómicas y proteómicas en aplicaciones industriales de levaduras y microalgas.
- Conocer aplicaciones biotecnológicas actuales de las levaduras y microalgas, así como sus perspectivas futuras.
- Familiarizarse con los principales tipos de biorreactores y fotorreactores, y comprender las claves para su diseño y funcionamiento.

COMPETENCIAS

Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
Sentirse comprometido con la Biotecnología para mejorar el bienestar (salud, economía, medioambiente) de la Sociedad
Sentirse comprometido con la investigación cono herramienta para fomentar los avances biotecnológicos que contribuyan al bienestar de las personas y la sostenibilidad de su entorno.
Capacidad de integrar conocimientos básicos y biotecnológicos, aplicaciones, servicios y sistemas con carácter generalista para su aplicación en al ámbito industrial en un entorno de gestión medioambiental sostenible.
Conocimiento de las sinergias e integración de las metodologías moleculares, genómicas y proteómicas en la identificación de biomarcadores moleculares para la monitorización de la calidad ambiental y sus efectos sobre los seres vivos.
Comprensión sistemática y dominio de las habilidades, métodos de investigación y técnicas relacionados con la Biotecnología.
Capacidad de interpretar y comprender textos científicos y técnicos especializados en el área de la Biotecnología.
Saber utilizar y valorar las fuentes de información, herramientas informáticas y recursos electrónicos para la elección y uso de las diferentes aproximaciones metodológicas en Biotecnología.
Poseer formación científica avanzada, multidisciplinar e integradora en el área de la Biotecnología, orientada a la investigación básica y aplicada y al desarrollo de productos, bienes y servicios en base a la manipulación selectiva y programada de los procesos celulares y biomoleculares.
Entender las principales teorías sobre el conocimiento científico en el área de la Biotecnología así como las repercusiones profesionales, sociales y éticas de dicha investigación
Capacidad de comunicar de manera eficaz los avances dentro del ámbito de la Biotecnología, así como sus implicaciones éticas y sociales, tanto a expertos como a un público no especializado.
Capacidad para aplicar los principios de la Biotecnología y de la gestión de recursos humanos y proyectos, así como la legislación, regulación y normalización de los reglamentos que se les aplican.
Adquirir conocimientos generales sobre las técnicas básicas para la selección y mejora biotecnológicos de microorganismos, plantas, y animales o enzimas obtenidos de ellos.
Ser capaz de comprender y aplicar los modelos y métodos avanzados de análisis cualitativo y cuantitativo en el área de la materia correspondiente.

CG2 Capacidad para comprender y aplicar la responsabilidad ética, la legislación y la deontología profesional de la actividad de la profesión CG3 Poseer las habilidades de aprendizaje que les permitan realizar un análisis crítico, evaluación y síntesis de ideas nuevas. Saber identificar preguntas de investigación y darles respuesta mediante el desarrollo de un proyecto de investigación CG4 CG5 Capacidad de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o cultural dentro de una sociedad basada en el conocimiento CG6 Saber analizar e interpretar los resultados obtenidos con el objeto de obtener conclusiones biológicas relevantes a partir de los mismos. Poseer una base formativa sólida tanto para iniciar una carrera investigadora a través de la realización del Doctorado como para desarrollar tareas profesionales especializadas en el ámbito de la Biotecnología que no requieran del título de Doctor. CG7 Capacidad para comprender y aplicar la responsabilidad ética, la legislación y la deontología profesional de la actividad de CG8 la profesión Demostrar la capacidad de concebir, diseñar, y desarrollar un proyecto integral de investigación, con suficiente solvencia CT1 técnica y seriedad académica. CT2 Capacidad de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o cultural dentro de una sociedad basada en el conocimiento CT3 Poseer las siguientes capacidades y habilidades: análisis y síntesis, organización y planificación, comunicación oral y escrita, resolución de problemas, toma de decisiones, trabajo en equipo, razonamiento crítico, aprendizaje autónomo, creatividad, capacidad de aplicar los conocimientos teóricos en la práctica, uso de Internet como medio de comunicación y como fuente de información. Actuar profesionalmente desde el respeto y la promoción de los derechos humanos, los principios de accesibilidad universal CT4 de las personas con discapacidad, el respeto a los derechos fundamentales de igualdad y de acuerdo con los valores propios de una cultura de paz y valores democráticos.

CONTENIDOS

1. Contenidos teóricos

Programa de la parte de levaduras:

- 1.-Las levaduras. Características morfológicas y fisiológicas.
- 2.- Genómica y proteómica de levaduras industriales. Aplicación de los chips de DNA a las levaduras industriales. Proteómica en levaduras vínicas.
- 3.- Levaduras de flor. Base molecular de la formación del velo de flor. Aplicaciones biotecnológicas.
- 4.- Mejora de levaduras industriales mediante técnicas de ingeniería genética. Sistemas de transformación genética en levaduras. Regulación de la expresión génica: promotores de interés biotecnológico. Levaduras transgénicas. Perspectivas de futuro.
- 5.- Inmovilización de levaduras. Cultivos de levaduras inmovilizadas. Ventajas y dificultades de usar levaduras inmovilizadas. Métodos de inmovilización. Aplicaciones de la inmovilización celular en vinificación. Bioinmovilización.

Programa de la parte de biorreactores:

- 1.- Aspectos generales de los biorreactores. Tipos y modos de funcionamiento.
- 2.- Cinética bioquímica. Análisis y diseño.
- 3.- Biorreactores para levaduras. Relación entre tipo de producto y elección del biorreactor.
- 4.- Biorreactores para microalgas. Fotobiorreactores. Aspectos generales de su diseño y funcionamiento.

Programa de la parte de microalgas:

- 1.- Las microalgas. Características y ciclos reproductivos. Papel biogeoquímico de las microalgas. Las microalgas y los ciclos del carbono, nitrógeno, fósforo, y azufre.
- 2.- Aplicaciones y usos de microalgas en alimentación. Polisacáridos derivados de las microalgas. Otras aplicaciones de las microalgas.
- 3.- Transformación de microalgas y cianobacterias. Métodos y características. Construcciones utilizadas. Dificultades para la expresión estable de los transgenes.
- 4.- El sesgo en el uso de codones en la expresión de genes heterólogos. Expresión en el núcleo frente al cloroplasto.
- 5.- La producción de hidrógeno a partir de microalgas transgénicas. Estrategias de ingeniería de microalgas eucariotas.
- 6.- Secuenciación de los genomas de microalgas. Manejo de las bases de datos de los genomas.
- 7.- Mutagénesis insercional en los estudios de genómica funcional.
- 8.- Producción de productos de interés farmacológico y vacunas en microalgas. Optimización de la expresión de proteínas recombinante en los cloroplastos.

2. Contenidos prácticos

Práctica 1: Observación macroscópica y microscópica de levaduras. Análisis comparativo. Inmovilización de

células de levaduras para su uso industrial.

Práctica 2: Transformación de microalgas con marcadores moleculares. Análisis de transformantes para detectar la

presencia de un marcador en la inactivación insercional de un gen blanco.

Práctica 3: Problemas numéricos sobre análisis y diseño de un biorreactor.

METODOLOGÍA

Aclaraciones

Clases teóricas: se llevarán a cabo en aula, el profesor introducirá el tema de estudio mediante una lección magistral con presentaciones virtuales y apoyo de medios audiovisuales y potenciando la participación activa del alumno. Estas clase tiene carácter obligatorio. Seguidamente los alumnos buscarán en internet y analizarán documentos sobre el tema tratado, harán una pequeña exposición y se debatirá entre todos los estudiantes y el profesorado.

Clases prácticas: se realizarán en laboratorio, grupos reducidos y con carácter obligatorio.

Actividades dirigidas: los alumnos están obligados a realizar un trabajo escrito referente a uno o varios temas de la asignatura. Posibilidad de hacer ejercicios y problemas planteados por el profesor y los alumnos. Aunque esta última actividad tiene un carácter optativo.

Tutorías: consistirán en la orientación del profesorado al alumnado, y serán personalizadas. Con carácter presencial en los correspondientes despachos o en espacio virtual de aprendizaje (Moodle).

Para los alumnos a tiempo parcial, la metodología será el siguiente:

Las adaptaciones de la metodología didáctica para los estudiantes a tiempo parcial se realizarán de acuerdo con la normativa del centro y atendiendo a las características de cada caso.

Actividades presenciales

Actividad	Total
Actividades de evaluación	2
Análisis de documentos	2
Debates	1
Exposición grupal	2
Laboratorio	4
Lección magistral	16
Realización de cuestionarios en línea	2
Tutorías	1
Total horas:	30

Actividades no presenciales

Actividad	Total
Búsqueda de información	20
Consultas bibliográficas	20
Trabajo de grupo	30
Total horas:	70

MATERIAL DE TRABAJO PARA EL ALUMNADO

Ejercicios y problemas Manual de la asignatura Ordenador portatil con WIFI Presentaciones en PowerPoint

Aclaraciones:

Para la búsqueda y análisis de textos en Internet los alumnos deben traer a clase de teoría un ordenador portátil con WIFI.

El manual de la asignatura que corresponde a la guía, criterios de evaluación, presentaciones de los temas, preguntas de revisión, problemas, web de interes, cuestionarios online, etc. se encuentra en la plataforma virtual educativa (Moodle) de la Universidad de Córdoba.

EVALUACIÓN

Instrumentos	Porcentaje
Asistencia (lista de control)	10%
Autoevaluación	10%
Examen tipo test	40%
Trabajos y proyectos	40%

Periodo de validez de las calificaciones parciales: Se conservarán todas las calificaciones parciales hasta la superación de la asignatura.

Aclaraciones:

Se realizará una evaluación continua (realización de cuestionarios y problemas, preguntas en clase, participación en debates, preguntas de interés,...). El peso mayor de la evaluación recaerá en el trabajo escrito realizado y en el examen tipo test. También se valorarán positivamente la participación en las tutorías. Al final los alumnos deberán autoevaluarse.

Para los alumnos a tiempo parcial, la metodología será el siguiente:

Las adaptaciones metodológicas para los estudiantes a tiempo parcial se realizarán de acuerdo con la normativa del centro y atendiendo a las características de cada caso.

BIBLIOGRAFÍA

1. Bibliografía básica:

- Barbosa, M. Microalgal photobioreactors. Scale-up and optimisation. 2003. Ph.D. Thesis, Wageningen University, The Netherlands. ISBN: 90-5808-898-7.
- Barsanti, L., Gualtieri, P. Algae. Anatomy, Biochemistry and Biotechnology. 2006. CRC Press-Taylor and Francis. Boca Raton.
- Carrascosa, A.V., Muñoz, R., González, R. Molecular Wine Microbiology. 2011. Academic Press, London. ISBN: 978-0-12-375021-1.
- Dutta, R. Fundamentals of Biochemical Engineering. 2008. Springer. ISBN: 978-3-540-77900-1.
- Forján Lozano, E., Vilchez Lobato, C., Veega Piqueres, J.M. 2014. Biotecnología de algas. Cepsa.
- Glick, B.R., Pasternak, J.J. Molecular Biotechnology. Principles & Applications of Recombinant DNA. 1998. ASM Press, Washington.
- León, R., Galván, A., Fernández, E. Transgenic microalgae as green cell factories. 2007. Springer Science-Landes Bioscience. New York, Austin.
- Moreno-Arribas, M.V., Polo, M.C. Wine Chemistry and Biochemistry. 2009. Springer. New York. ISBN: 078-0-387-74116-1.

- Nedovic, V., Willaert, R. Applications of cell Immobilisation Biotechnology. 2005. Springer. The Netherlands. ISBN: 1-4020-3229-3.
- Xiao, W. Yeast Protocols. Methods in Molecular Biology. 2006. Humana Press Inc. Totawa, New Jersey. ISBN: 1-58829-437-4.

2. Bibliografía complementaria:

Ninguna.