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Abstract Antiphospholipid syndrome (APS) is a disorder
characterized by the association of arterial or venous
thrombosis and/or pregnancy morbidity with the presence of
antiphospholipid antibodies (anticardiolipin antibodies, lupus
anticoagulant antibodies, and/or anti–β2-glycoprotein I anti-
bodies). Several studies have contributed to uncovering the
basis of antiphospholipid antibody pathogenicity, including
the targeted cellular components, affected systems, involved
receptors, intracellular pathways used, and the effector
molecules that are altered in the process. Therapy for
thrombosis traditionally has been based on long-term oral
anticoagulation; however, bleeding complications and recur-
rence despite high-intensity anticoagulation can occur. Based
on all the data obtained, new potential therapeutic agents have
been proposed. Statins have a variety of direct effects on gene
expression and the function of cells of both the innate and
adaptive immune systems, many of which are related to
blockade of GTPase isoprenylation. In APS, statins have
multiple profound effects on monocyte, lymphocyte, and
endothelial cell activities, all of which may contribute to
thrombosis prevention in APS patients. Nevertheless, larger
randomized trials are needed to validate the role of statins in
the treatment of this autoimmune disease.
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Introduction

Antiphospholipid syndrome (APS) is a disorder characterized
by thrombosis and pregnancy morbidity associated with the
persistent presence of antiphospholipid antibodies (aPLs),
including anti–β2-glycoprotein I (anti-β2GPI) and/or lupus
anticoagulant antibodies [1]. Thrombosis is the major
manifestation in patients with aPLs, but the spectrum of
symptoms and signs associated with aPLs has broadened
considerably, and other manifestations, such as thrombocy-
topenia, nonthrombotic neurological syndromes, psychiatric
manifestations, livedo reticularis, skin ulcers, hemolytic
anemia, pulmonary hypertension, cardiac valve abnormality,
and atherosclerosis, have also been related to the presence of
those antibodies [2].

Many mechanisms have been proposed to explain the
thrombotic tendency of patients with APS, but the pathogen-
esis seems to be multifactorial. Procoagulant cell activation,
accompanied by tissue factor (TF) expression and TF pathway
upregulation, is one of the key events in the pathophysiology
of thrombosis in patients with APS. Previous studies showed
elevated plasma levels of soluble TF in APS patients, and
thereafter we reported that monocytes isolated from APS
patients had high TF expression [3–5]. At the molecular level,
the signal transduction mechanisms induced by aPLs have
been explored. In a recent study, we showed that aPLs
induced TF in monocytes from APS patients by activating—
simultaneously and independently—the phosphorylation of
mitogen-activated protein kinase (MAPK)/extracellular regu-
lated kinase protein, and the p38 MAPK-dependent nuclear
translocation and activation of nuclear factor-κB (NF-kB)/Rel
proteins [6]. Similar results have been reported in platelets,
monocyte cell lines, and in vivo models of aPL-induced
thrombogenicity [7–9]. Parallel studies performed in endo-
thelial cells (ECs) further concluded that 1) NF-κB plays an
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essential role in TF activation by aPLs [10]; and 2) p38
MAPK phosphorylation and NF-κB activation are involved
in the aPL-induced increase in TF transcription, function, and
expression; interleukin (IL)-6 and IL-8 upregulation; and
inducible nitric oxide synthase expression [11]. Previous
reports indicate a close relationship between TF and vascular
endothelial growth factor (VEGF), a family of proteins
involved in normal vascular development and in relevant
pathophysiologic settings, including cancer, wound healing,
and inflammation [12]. Precedent studies had reported
increased plasma levels of VEGF in APS patients [13]. In a
recent study, we analyzed the VEGF and fms-related tyrosine
kinase 1 (FLT1) expression levels in monocytes of APS
patients, the molecular mechanisms involved in their aPL-
induced expression, and their association with the elevated
TF expression found in these patients [14]. Our data primarily
showed that monocytes from APS patients expressed
increased levels of both VEGF and FLT1 in comparison
with monocytes from healthy donors. Furthermore, in vitro
results indicated that this cytokine was produced by mono-
cytes when treated with aPLs, and that the p38 MAPK
signaling pathway played an important role. Thus, VEGF
might act as a regulatory factor in aPL-mediated monocyte
activation and TF expression, thereby contributing to the
proinflammatory–prothrombotic phenotype of APS patients.

Experimental studies and human observations suggest that
APS is associated with atherosclerosis. In fact, innate and
adaptive immune responses participate in the pathogenesis of
both diseases. Anti-oxLDL, anti-aPL, anti-β2GPI, and anti-
HSP antibodies, among others, have been found in patients
with APS and atherosclerosis [15]. Endothelial dysfunction,
oxidative stress, an increase in cell adhesion molecules, and
active platelets are common findings in both diseases. In
addition, macrophages, dendritic cells, T-cell activation, and
CD40–CD40 ligand interaction are considered pathogenic
mechanisms of atherosclerosis and APS [16–18].

Obstetric complications are the second major feature
associated with APS. Results from studies in mice show a
pivotal role for complement activation in fetal loss induced by
aPLs [19, 20]. Moreover, C4d and C3b fractions are
deposited in the placentas of patients with aPLs. Interference
with annexin V, a natural anticoagulant, might also favor
placental thrombosis and fetal loss [21]. Furthermore,
abnormalities in placentation have been described in preg-
nancy loss related to aPLs [22]. The trophoblasts of the
placenta express anionic phospholipids on their cell mem-
brane, enabling them to bind exogenous β2GPI [23].
Moreover, it was also noted that these trophoblasts are
capable of synthesizing their own β2GPI [24]. β2GPI
directly binds to cultured cytotrophoblast cells and is
subsequently recognized by antibodies to β2GPI [25]. The
aPL binding reduces the secretion of human chorionic
gonadotropin. Moreover, aPLs might trigger an inflammatory

response mediated by the Toll-like receptor 4/MyD88
pathway, resulting in trophoblast damage [26].

Therapeutic Management of Antiphospholipid Syndrome

Control of conventional risk factors for thrombosis and
prophylaxis during high-risk periods is crucial for primary
and secondary thrombosis prevention in persistently aPL-
positive individuals. Traditional treatment of thrombosis has
been based on long-term oral anticoagulation. As more insight
is gained about the pathophysiology of the disease and the
involved receptors and intracellular pathways, targeted treat-
ment modalities have been proposed as possible alternatives
to the current treatment options. Thus, in the past few years,
several potential new therapeutic approaches to APS are
emerging, including combination of antiaggregant therapy,
oral antifactor Xa drugs, direct thrombin inhibitors, hydroxy-
chloroquine, and B-cell depletion [27•].

Anti-inflammatory and immunomodulatory approaches
also have been increasingly investigated by different research
groups. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase inhibitors, generically referred to as statins,
have emerged as the leading therapeutic regimen for treating
hypercholesterolemia and reducing cardiovascular morbidity
and mortality. In addition, statins have comprehensive
immune-modulating properties that affect many aspects of
the inflammatory response.

Pleiotropic Effects of Statins on Inflammation and Vascular
Function

In the general population, clinical trials have demonstrated
beneficial effects of statins in primary and secondary
prevention of coronary heart disease as well as ischemic
stroke [28–30]. The statin family of drugs comprises
naturally occurring members (eg, lovastatin, mevastatin,
pravastatin, and simvastatin) and synthetic members (flu-
vastatin, atorvastatin, and rosuvastatin), which differ in
their lipophilicity, half-life, and potency. Statins inhibit the
conversion of HMG-CoA to L-mevalonate through com-
petitive inhibition of the rate-limiting enzyme HMG-CoA
reductase. This inhibition results in a decrease in the
downstream biosynthesis of cholesterol and other interme-
diate metabolites, including the isoprenoids farnesyl pyro-
phosphate and geranylgeranyl pyrophosphate. These
isoprenoid pyrophosphates serve as essential adjuncts in
the post-translational modification of many key proteins
that function as molecular switches, including the small
GTPases Ras, Rac, and Rho. The post-translational mod-
ifications enable these signaling proteins to associate with
membranes, a prerequisite for most of their biological
functions [31]. By altering isoprenylation, which in turn
induces the inhibition of the small GTP-binding proteins
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Rho, Ras, and Rac, statins are able to improve the
endothelial function, enhance the stability of atherosclerotic
plaques, decrease oxidative stress and inflammation, inhibit
the thrombogenic response, and exert beneficial effects on
the immune system [32].

Several recent publications have demonstrated the pleio-
tropic effects of statins on T-cell and antigen-presenting cell
function, leukocyte adhesion and migration, endothelial and
monocyte/macrophage function, as well as on in vivo models
and human studies of several autoimmune and cardiovascular
diseases [33]. In the following paragraphs, we briefly
summarize the cellular and molecular mechanisms involved.

Effects of Statins on T-Cell and Antigen-Presenting Cell
Functions

Statins inhibit cytokine-inducible expression of major histo-
compatibility complex class II molecules and co-stimulatory
molecules by antigen-presenting cells and prevent antigen
presentation to CD4+ T cells. T-cell proliferation is abrogated
through modulation of GTPase-linked regulation of cell cycle
progression and proliferation. In addition, the effects of
statins on cytoskeletal organization interfere with formation
of the immunologic synapse. Statins also alter the T-cell
profile by inhibiting the secretion of proinflammatory
cytokines (eg, interferon [IFN]-γ) through inhibition of signal
transducer and activator of transcription 4 (STAT4) and the
transcription factor T-bet, which are required for T-helper type
1 (Th1)-cell differentiation. Conversely, statins might also
increase the secretion of anti-inflammatory Th2-type cyto-
kines (eg, IL-4) through the activation of both STAT6 and
GATA-binding protein 3 (GATA3), which are involved in
Th2-cell differentiation [34–36].

Effects of Statins on Leukocyte Adhesion and Migration
and Endothelial Cell Immune Function

Cell adhesion molecule expression by leukocytes and ECs is
attenuated by statins, resulting in reduced adhesion and
transvascular migration. In addition, statins inhibit chemokine
and matrix metalloproteinase (MMP) secretion, which further
interferes with leukocyte migration. In the endothelium,
adhesion molecule signaling that is required for leukocyte
migration is blocked through the modulation of Rho and other
small GTPases. This might also result in stabilization of the
endothelial cell–cell junction. The effect of statins on the
cytoskeleton alters leukocyte motility and directional migra-
tion in response to chemotactic gradients [37–40].

Effects of Statins on Monocyte Function

Statins induce a shift from the production of monocyte
proinflammatory (Th1) cytokines (IL-2, IL-12, IFN-γ, and

tumor necrosis factor [TNF]-α) to the production of Th2
cytokines (IL-4, IL-5, and IL-10) [41]. Moreover, statins
have been shown to mediate increases in suppressor of
cytokine secretion 3 and suppressor of cytokine secretion,
which negatively regulate the STAT/Janus kinase (JAK)
signal transduction pathway and IL-6 and IL-23 gene
expression in monocytes. Statins also have been demon-
strated to induce IFN-γ, IL-4, and IL-27 production in
monocytes, which together inhibited IL-17 transcription
and secretion in CD4+ T cells [42]. Furthermore, statins
decrease the expression of adhesion molecules, prevent
low-density lipoprotein oxidation, and decrease secretion of
MMPs and TF expression in monocytes.

Pharmacogenomic and Pharmacoproteomic Profiles
of Statin Treatment

Various studies have used genomics and proteomics to
analyze modifications in the protein map of plasma and
blood cells after statin treatment of hypercholesterolemic
patients, patients with autoimmune diseases associated with
cardiovascular disease, and patients with atherosclerosis.
Data obtained suggest that multiple polymorphisms are
responsible for the different responses to these drugs
observed in humans. In addition to cholesteryl ester transfer
protein (CETP) and APOE, other genes were recently
reported to exhibit polymorphisms that influence the
response to this class of drugs. Recently, two common
and tightly linked single nucleotide polymorphisms in the
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) gene
(a A>T substitution at position 74726928 and a T>G
substitution at position 74739571) were found to be related
to the response to pravastatin treatment [43]. Individuals
with a single copy of the minor allele of these single
nucleotide polymorphisms had their overall efficacy for
modifying total cholesterol concentration reduced to 22%.
On the other hand, pleiotropic genes whose variations have
been studied with statins are the genes coding for the
angiotensin-converting enzyme (ACE), β-fibrinogen
(FGB), glycoprotein IIIa (GPIIIa), stromelysin-1 (MMP3),
CD36, and estrogen receptor-α (ESR1) [44].

Pharmacoproteomic approaches are clearly very useful
during the development of new drugs to control some
toxicity, including drug interactions and in different
pathological status. The modulation of the levels of proteins
secreted by cultured atherosclerotic plaques and in the
blood of patients with atherosclerosis after atorvastatin
treatment was evaluated recently [45]. This study showed
24 proteins that were increased and 20 that were decreased
after statin treatment. Some of the increased proteins, such
as cathepsin D (which could play a significant role in
plaque stability), reverted to control values after atorvasta-
tin administration, becoming a potential therapeutic target
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for statin treatment. Furthermore, recent studies by Grobbee
and Bots [46] have examined the evidence for imaging
studies showing the efficacy of statins in slowing athero-
sclerosis progression and promoting disease regression.

Finally, Anderson and Anderson [47] have described—
via proteomic studies—key modifications after statin
treatment in carbohydrate metabolism, stress proteins,
calcium homeostasis, and protease activity. It also has been
suggested that changes in other enzymes from the meval-
onate pathway could provide important information regard-
ing the problems with the use of different statin derivatives
or some of their side effects.

Statins in Primary Antiphospholipid Syndrome

The contribution of TF and proinflammatory mediators (eg,
IL-6 or VEGF) to a prothrombotic state in the APS, as well
as the proven interference of statins with aPL-mediated
thrombosis have provided a renewed focus on antithrom-
botic therapies in current use. Several publications have
reported the pleiotropic effects of different statins on
cultured ECs, platelets, monocytes/macrophages, and in
vivo models and human studies of several cardiovascular
diseases [33, 48, 49].

First, Meroni et al. [50] showed that statins interfere with
aPL-induced EC activation via inhibition of the expression
of adhesion molecules and IL-6, which is mediated by NF-
κB. Then, Ferrara et al. [51, 52] demonstrated in vivo that
fluvastatin inhibited the thrombogenic and inflammatory
properties of aPLs and inhibited TF upregulation in aPL-
treated ECs. Martinez et al. [53] demonstrated that
rosuvastatin decreased expression of vascular cell adhesion
molecule 1 by human umbilical venous endothelial cells
exposed to APS serum in an in vitro model.

More recently, our group delineated the global effects of
fluvastatin on the prothrombotic tendency of monocytes
from APS patients (Fig. 1) [54•]. Forty-two APS patients
with thrombosis received fluvastatin, 20 mg/d, for 1 month.
Blood samples were obtained before the start of treatment,
at the end of treatment, and 2 months after the end of
treatment. After 1 month of treatment, monocytes showed
significant inhibition of TF, protease-activated receptor
(PAR)-1 and PAR-2, VEGF, and FLT1 expression that
was related to the inhibition of p38 MAPK and NF-κB/Rel
DNA-binding activity. Proteomic analysis further showed
proteins involved in thrombotic development (annexin II,
RhoA, and protein disulphide isomerase) with altered
expression after fluvastatin administration. In vitro studies
indicated that the inhibition of HMG-CoA by fluvastatin
might inhibit protein prenylation and MAPK activation.

Our data agree with those from the study by Redecha et
al. [55], which by using a murine model demonstrated the
beneficial effects of statins in the setting of APS, showing

that statins prevented neutrophil activation by downregulat-
ing TF and PAR-2 and protected mouse fetuses from aPL–
IgG-induced injury. Moreover, that research group later
demonstrated (by using a murine model of recurrent
spontaneous miscarriages that shares features with human
recurrent miscarriage and fetal growth restriction) that by
inhibiting TF with pravastatin, release of antiangiogenic
factor sFlt-1 is inhibited, trophoblast proliferation and
placental flow are restored, placental oxidative damage is
prevented, and pregnancies are rescued [56].

A recent study by Jajoria et al. [57•] showed a significant
decrease in the titers of VEGF in the plasma of APS
patients after 30 days of treatment with fluvastatin.
Moreover, that study further addressed the beneficial effects
of fluvastatin in other prothrombotic/proinflammatory
markers induced by aPLs in APS patients, including TF
and TNF-α.

From these studies, it seems clear that the inhibition of
HMG-CoA reductase by fluvastatin, which is a rate-
limiting enzyme of the mevalonate pathway, might reduce
the expression and activity of specific subfamilies of small
GTPases, therefore inhibiting protein prenylation and
MAPK activation. This inhibition is likely to have profound
effects on key cellular processes, including the suppression
of TF and PAR expression, and anti-inflammatory activities
on macrophages through the inhibition of proinflammatory
cytokines such as VEGF/FLT1. Furthermore, these studies
provide significant evidence that fluvastatin has profound
and multiple effects in monocyte activity, which might lead
to the prevention of thrombosis in APS patients. Elucidat-
ing the mechanisms of action of statins will help rationalize
the design of such alternative and/or complementary
therapy in APS patients.

In summary, wide experimental evidence found in APS
models and the recent randomized clinical trial demonstrating
a protective effect for rosuvastatin against first major
cardiovascular event in the general population without
hyperlipidemia but with elevated high-sensitivity C-reactive
protein levels [58] justify clinical studies of statins in aPL-
positive patients. Nevertheless, many studies have allowed
the qualification of statins as category X by the US Food and
Drug Administration and are therefore contraindicated in
pregnancy. That qualification has been based on their proved
teratogenicity, placental disruption, and theoretical long-term
fetal neurological damage [59–61]. Statins also have been
involved in the disruption of gonadal stem cell development
in fetuses, potentially leading to infertility or other problems
[62]. Nevertheless, some studies, mainly developed by
Redecha and colleagues [55], have demonstrated—by using
a murine model—the beneficial effects of statins in prevent-
ing pregnancy losses in the setting of APS. That group
supports the development of clinical trials to confirm its
application to humans, yet many other authors argue that the
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experience in mice is insufficient to suggest a clinical trial in
pregnant women. Because many studies have shown that it is
possible to prevent repeated miscarriages in women with
APS by using safer therapeutic approaches, most probably
believe that this kind of “dangerous” trial would hardly ever
be developed in the future.

Statins in Systemic Lupus Erythematosus

Statins also may play an important role in the treatment of
systemic lupus erythematosus (SLE) patients with regard to
the prevention of cardiovascular disease as well as the
immunomodulation over the chronic inflammatory activity
of the disease. A study by Ferreira et al. [63] demonstrated
a surprising reduction on the SLE Disease Activity Index
(SLEDAI) after atorvastatin therapy, in addition to the
improvement of the endothelial-dependent vasodilatation in
SLE patients after an 8-week controlled trial. In support of
this observation, Kotyla et al. [64] observed a similar
reduction on the SLEDAI in a group of female patients
treated with another statin, simvastatin. Reduction on the
SLEDAI was accompanied by a prominent suppression of
TNF-α concentration in the sera of treated patients. That
phenomenon was observed after just 4 weeks of treatment
with simvastatin at a dose of 20 mg. They also reported

improvement in endothelial function, leading to the thesis
that restoration of endothelial function was not restricted to
the single compound (atorvastatin), but may be recognized
as a class of drug effect. As TNF-α is believed to mediate
endothelial damage, the authors speculated that suppression
of TNF-α levels after statin therapy might be one
mechanism via which restoration of endothelial function
occurs.

In lupus-prone NZB/W mice receiving atorvastatin
orally or intraperitoneally, contradictory results were
obtained [65]. No significant effects of fluvastatin on
cardiac events in renal transplant recipients with SLE were
observed in a recent study [66]. Therefore, the preliminary
positive findings must be confirmed in multicenter and
long-term studies to determine whether statin treatment in
SLE patients is associated with a relevant reduction in
cardiovascular morbidity and mortality, as well as with an
amelioration of the inflammatory status, and whether this
drug category should be broadly indicated for SLE patients.

Conclusions

Most experimental data lead us to believe that statins, alone
or probably in combination with other therapeutic

Fig. 1 Antithrombotic/anti-inflammatory mechanisms underlying the
effects of fluvastatin on monocytes from antiphospholipid syndrome
(APS) patients. The diagram shows cell surface receptors, proteins,
and intracellular pathways affected by IgG-APS antibodies in
monocytes and the effects promoted on their expression or activity

by fluvastatin treatment in APS patients. AnxII, annexin II; β2GPI,
β2-glycoprotein I; MAPK, mitogen-activated protein kinase; NF-κB,
nuclear factor-κB; PAR, protease-activated receptor; PDI, protein
disulphide isomerase; TF, tissue factor; VEGF, vascular endothelial
growth factor
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approaches, will improve clinical outcomes in APS
patients. The greatest therapeutic attribute of statins is their
ability to modulate a broad range of proinflammatory
immune mechanisms through inhibition of small GTPases
and other prenylated proteins. Their ability to induce
downregulation without provoking complete inhibition of
these crucial signaling proteins is fundamental to their
efficacy (a complete blockade of these molecular switches
would be lethal in most cases). The relative safety of these
agents and their ease of delivery also provide a compelling
case for their evaluation in the clinical setting. Although
caution must be applied, the high degree of patient
tolerance to statins and their simplicity of delivery make
them a highly attractive addition to currently available
immunosuppressive drugs. It is likely that the cell type, the
statin used, the dose, and the duration will all determine
which outcome predominates.
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