
Introduction to CosmoMC

Antonio J. Cuesta
Institut de Ciències del Cosmos - Universitat de Barcelona

Part II: Installation and Execution

Dept. de Física Teórica y del Cosmos, Universidad de Granada, 1-3 Marzo 2016

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Outline of Part II

• Downloading and Installing CosmoMC

• Customizing Params.ini: datasets and model parameters

• Running the code: the script runMPI.py

• Testing for chain convergence

• Finding the maximum likelihood values

• Post-processing: Importance sampling

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Downloading CosmoMC

• Go to http://cosmologist.info/cosmomc/submit.html
You will receive an email with links to download current and previous versions

http://cosmologist.info/cosmomc
http://cosmologist.info/cosmomc

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Installing Planck likelihood

• This is technically NOT part of CosmoMC, but you will need it every time,
so when you install CosmoMC, you want to install this all together.

•

You have to download at least two files (300MB): the likelihood code
COM_Likelihood_Code-v2.0_R2.00.tar.bz2 and the data files
COM_Likelihood_Data-baseline_R2.00.tar.gz (that contains hi_l, low_l, lensing)

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Installing Planck likelihood

• Installation is done by running these two commands:
./waf configure --lapack_mkl=${MKLROOT} --install_all_deps
./waf install

• We will not need to do this, since it is already installed in ftaecluster, but we
do need to set up the environment so that CosmoMC can find the files:
source ./bin/clik_profile.sh

• You just need to create a symbolic link to your Planck2015 likelihood directory
(plc_2.0) to a folder named ‘clik’ inside cosmomc/data/
ln -s /path/to/planck/2015/plc_2.0 /path/to/cosmomc/data/clik

• NOW you can compile!

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Installing CosmoMC

• Unfortunately current version of CosmoMC requires a commercial compiler
(Intel Fortran Compiler, part of Intel Parallel Studio XE), a.k.a. “ifort”

• The (free) GNU Fortran compiler “gfortran” could in principle be used, but
current released versions (including v5.3.0) do not work, but dev-v6.0 does.
Performance is not expected to match ifort, but at least it is free

MPI compiler

Fortran compiler

Flags for optimization, openMP parallelization, and link to Intel MKL library

Edit this file: source/Makefile
make

make install

Use the same compiler for Planck and CosmoMC !!

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Parameter files

• This code has two main parameter files:

• params.ini, the parameter file for CosmoMC,
which sets up the chains (cosmological model and datasets)

• distparams.ini, the parameter file for GetDist,
which sets up the analysis (figures and statistics)

• There are many other (minor) settings contained in other files. If you have a
specific need, it will most likely be contained in those other files!

Antonio J. Cuesta “Introduction to CosmoMC” Part II

params.ini : File structure

• This file contains all the settings for your MCMC chains. It can have any
name, but we will refer to it as params.ini.

• The settings can be (and actually are) nested, i.e. inside params.ini you can
INCLUDE or DEFAULT another settings file. This is called nesting

• INCLUDE will add the new settings if they are not previously defined

• DEFAULT will override previously defined settings if there is a conflict

• Note that the main file which is nested inside params.ini is batch2/
common.ini, where the variable MPI_Converge_Stop is set.

Antonio J. Cuesta “Introduction to CosmoMC” Part II

params.ini : Basic settings

• First, you want to name your chain. Tip: the name should contain information
about the cosmological model, and about the datasets used
(e.g. ‘OLCDM_Planck2015_BAO’)

• Second, you want to run a MCMC chain. So make sure that the setting action
in params.ini is set to zero (action=0). By default it is set to test likelihoods
(action=4). Note that you can also find the best-fitting values of your
cosmological parameters given the datasets (action=2) or add a new dataset
to existing chains via importance sampling (action=1)

You can also change the temperature in your chains, i.e. sample the distribution P1/T(x) rather than P(x).
High temperature will explore tails better.

Antonio J. Cuesta “Introduction to CosmoMC” Part II

params.ini : Choosing your datasets

• Select the datasets (likelihoods) to be used. Comment out (using ‘#’ symbol)
the ones you don’t need. Include the ones you want with DEFAULT

All the built-in likelihoods are installed in the batch2/ directory
You can define yours too (take batch2/HST.ini as a good starting example)

for example, for CMB from PLANCK, you typically want to include a low-𝓵
likelihood, a high-𝓵 likelihood, and (sometimes) a CMB lensing likelihood.

Planck2015 highL temperature+polarization
Planck2015 lowL temperature+polarization
Planck2015 lowL temperature only
Planck2015 CMB lensing

BAO from BOSS+MGS+6dF(+WiggleZ)
WiggleZ galaxy power spectrum
SDSS galaxy power spectrum
CFHTLens weak lensing

Also, SNe from JLA, etc.

Antonio J. Cuesta “Introduction to CosmoMC” Part II

params.ini : Setting your parameters

• In CosmoMC there are three types of parameters:

• Cosmological parameters: these are the ones you want to vary, as part of the
cosmological model you choose. The default is the 6 ΛCDM base parameters

• Nuisance parameters: these you are forced to vary when you include some
particular datasets (e.g. Planck, JLA) because this is the way to marginalize
over systematics effects. They are added automatically when you use that data

• Derived parameters: these are not varied themselves, but they depend on
cosmological parameters (Ωm0.3σ8), so you indirectly obtain constraints on them
They are marked with a star (*), see paramnames/derived_.paramnames

They will all included in your chains explicitly, so you can check that everything is OK by looking at your chains
or the *paramnames file generated in the directory cosmomc/chains

Antonio J. Cuesta “Introduction to CosmoMC” Part II

params.ini : Setting your parameters

• The priors of the 6 LCDM parameters are defined in the file
batch2/params_CMB_defaults.ini
Change them here if you need to, or (better) re-define them again in your
params.ini, which has higher priority. Follow this syntax:

• Basically write a fiducial (a guess) starting value, a left and a right bound
(hard priors), and two numbers you guess for the uncertainties

• You can of course include additional non-LCDM parameters defined in CAMB
A complete list is in the file paramnames/params_CMB.paramnames

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Running the code

• Remember that this is a PARALLEL code! Although it can be run in any
machine (provided that it meets the compiling requirements), it only makes
sense to run it in multi-processor machines (not on your laptop)

• The code has OpenMP/MPI parallelization implemented. That basically
means that you can run the code in parallel using processors in the same
node (OpenMP) or in different nodes (MPI). Or, better, combine both

• The typical workload distribution to get the best of both parallelization
schemes: communication between chains uses MPI and each chain uses as
many processors as possible = #processors_per_node / #chains_per_node

• In the practice session, we will use 1 node per person, so MPI communication will be INSIDE the same node

Antonio J. Cuesta “Introduction to CosmoMC” Part II

The script python/runMPI.py

• OpenMP is controlled by the environment (bash) variable OMP_NUM_THREADS
MPI is set up with the option -n of mpirun / mpiexec

• In a computing cluster like ftaecluster, we typically need to write a job file for
the torque/moab/slurm scheduler to set up the resources the code needs
and the command to be run

• This is what you’d always need to write in order to run a code in ftaecluster.
But fortunately, CosmoMC simplifies this task by using the script runMPI.py

Queue name
Nodes used
time required

job name

standard and
error outputs

Antonio J. Cuesta “Introduction to CosmoMC” Part II

The script python/runMPI.py

• The script python/runMPI.py uses an alternative way to submit runs to the
computing cluster by just using a 1-line command, e.g.:

• This basically gives the same information as before, but you don’t need to
write a file to submit a run -- you just write a command

• However, this requires that the cluster configuration is correctly specified in
the job_script file, which you have to customize (only once!) to your cluster

• In the case of ftaecluster, you can use the file job_script_ftaecluster
provided. Remember to change this if the cluster configuration changes!

Antonio J. Cuesta “Introduction to CosmoMC” Part II

How to minimize runtime

• This is usually given by your own experience, but there are general guidelines:

• OpenMP speeds up a chain by computing in parallel each call to CAMB
(‘slow’ steps, when the transfer function needs to be recomputed).

• MPI is used to communicate between chains. This happens rarely, when the
code decides to update the covariance matrix of your parameters from the
information in the already running chains, adapting the step size

• Remember also to include in your parameter file a propose_matrix
as close as possible to your model+dataset combination

Antonio J. Cuesta “Introduction to CosmoMC” Part II

How to minimize runtime

• I would recommend this typical set-up:

• at least 8 chains per code execution (therefore you will start with 8 different
initial conditions to sample your parameter space). If the node has 16
processors (ftae, nodes 1-7), that means OMP_NUM_THREADS=2. If the node
has 32 processors (ftae, nodes 8-9) that means OMP_NUM_THREADS=4

• If there are many nodes available, in principle you can run 1 chain per node
#PBS -l nodes=8:ppn=16

• In practice, you want to run several cosmological models or several dataset
combinations at the same time, so all chains in the same node
#PBS -l nodes=1:ppn=16

Antonio J. Cuesta “Introduction to CosmoMC” Part III

MCMC Chain files

• A chain file is just a text file, you can open it with any editor or use it through
any python script (or the way that is most convenient for you)

• Each row is a MCMC step. Each column is each one of the parameters in
this order: cosmological, nuisance, and derived. The first two columns are the
multiplicity (or number of steps spent in that point) and the -log(likelihood),
or “loglike”, which is just 0.5 times the total χ2 value.

LCDM parametersmult & loglike
1MCMC

step

Antonio J. Cuesta “Introduction to CosmoMC” Part III

MCMC Chain files

• The column ordering can be found in the file chains/root.paramnames

This file has two columns: the
internal name of the parameter

and a LaTeX script so that the plots
display their name properly

(edit this file to your convenience)

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Convergence: Gelman-Rubin criterion

• The R-1 estimator (Gelman and Rubin 1992) is defined roughly as “the variance
of the chain means divided by the mean of the variances”. A set of chains is
declared converged when this estimator is small enough (typically 0.01)

• This is computed for EACH parameter. Typically the value you quote to assess
the convergence of your chain is the worst (largest) value over all parameters

• Each chain will have a (slightly) different mean but the dispersion between
chains is small compared to the mean error bar when converged

where W is the “within chain” variance and B is the
“between chains” variance of the means

if the chain is more or less converged R will be a little bit over 1.0
convergence is measured by the value of R-1

Antonio J. Cuesta “Introduction to CosmoMC” Part II

How to check progress of your chains

• In the directory cosmomc/scripts there will be a file constantly updated
named root.log, where root is the name you gave to your chains in params.ini

• Open that file and search the word “convergence”. You will find several
instances like this:

Current convergence R-1 = 0.1990366 chain steps = 1370

• The last occurrence gives you an idea of the current chain convergence and
how far you are from the target value MPI_Converge_Stop (default 0.01)

• Another (better) way to obtain R-1 is to run GetDist (session 3)

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Find maximum likelihood (action=2)

• MCMC is not optimized to find a maximum, but to sample parameter spaces
(Metropolis-Hastings is NOT a gradient method like downhill simplex etc). The
bestfit value given at the likestats file (see session 3) will be approximate

• This uses Powell 2009 BOBYQA minimization. The code starts at the “center”
parameter values in the .ini file, and requires that the likelihood does not
return NaN in the region between those values

• It stops at a given value given by minimize_loglike_tolerance given
that the true minimum is within max_like_radius (in units of the parameter
error). All these settings are found at batch2/common.ini

• The output is then given in root.minimum

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Importance sampling (action=1)

• Sometimes you want to explore the effect of an additional dataset on your
chains that you already run with your favorite model+dataset combination.
(For example: you want to see the effect of a recent measurement of H0 on
your chains that you ran for CMB+BAO+SN in the ΛCDM model)

• In principle you would need to run a new chain, which is slow.
But this can be done much faster by re-weighting each step of your chains
(the re-weighting factor depends on the new data),
only if the following two requirements are met:

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Importance sampling (action=1)

• 1) The new measurement is consistent with the constraints from the chain.
That means, if your new data falls away from the allowed parameter space,
your resulting constraints will not be reliable since you did not have points to
reweight to begin with!

• 2) The new data is not too constraining. If the error bar of the new data is
small compared with the allowed region in your chains, most points will be re-
weighted to zero except for a small subset, and your constraints will be noisy.
The opposite case (new data has a very large error bar) can be applied though! but all the points will be
reweighted by the same value, so that will have no effect whatsoever

NewOld

New

Old

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Importance sampling (action=1)

• If you have *.data files this is fast and easy (~10 min). In your parameter file
set action=1 and redo_add=T and include the likelihoods you want to add.
Or if you set redo_add=F just include all the likelihoods you want included
(if a likelihood was included in the old chains, it will not be included twice)

• To create *.data files set the variable indep_sample to some number where
the steps are not correlated (GetDist will tell us this), also because *.data files
will contain Cℓ and P(k,z) and occupy disk space. Set it to more than 10.

• If you don’t have .data files you can still use redo_from_text to do the
sampling from the chain files (*.txt), but this is slow and does not work well

Antonio J. Cuesta “Introduction to CosmoMC” Part II

Background parametrization

• When no CMB likelihoods are going to be used, then a good choice is the
parametrization=background option. This is useful to constrain only
parameters not related to perturbations (e.g. not {As ns τ} but {H0 Ωm Ωk Ων w})

• parametrization=background is included in batch2/common.ini.
Also useful would be to create a file similar to params_CMB_defaults.ini in
which the perturbation parameters {As ns τ} are set to constant values, and
force bbn_consistency to F

• The current version of the file likelihood_paramsCMB.f90 sets Ωch2=0, and
τ=0, and Ωb=Ωm-Ων. This is obviously a bug, so it needs to be replaced and
recompiled. Also note that Ωb needs to be constrained by some dataset, or
just fixed to some standard value.

