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Abstract

This is a simple tutorial in order to introduce students to the use of
the cosmological code MontePython. The exercises were designed for the
Tutorial session ”Bayesian estimation of cosmological parameters” held on
the first day of the Cosmology School in the Canary Islands. This school
was held in September 18-22 in Fuerteventura, Spain, and organized by
the Instituto de Astrof́ısica de Canarias. The code MontePython (Audren
et al., 2013) is a Bayesian parameter inference code for Cosmology. Its
website is http://baudren.github.io/montepython.html
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Step 0: Installation

As a requirement for completing this tutorial, one needs to install CLASS1 and
MontePython2. The best way to avoid compilation problems in CLASS is to
install a Python distribution such as Anaconda3. If you already have such
distribution, you can safely skip its installation. Otherwise the following script
should help. The installer for Anaconda will ask you some questions, to which
you should answer ’yes’. Besides, if you do not want these codes to be installed
just below your home folder, feel free to modify the ROOT environment variable.

#!/bin/bash

ROOT=$HOME

# Downloading and installing Anaconda+PySide

export VERSION=4.4.0-MacOSX-x86_64 # if you use Linux, export VERSION=4.4.0-Linux-x86_64

cd $ROOT

curl https://repo.continuum.io/archive/Anaconda2-$VERSION.sh -o Anaconda2-$VERSION.sh

bash Anaconda2-$VERSION.sh

export PATH="$ROOT/anaconda2/bin:$PATH"

conda install -c https://conda.anaconda.org/anaconda pyside #necessary for GetDist GUI

This script will install CLASS (Lesgourgues, 2011), hi class (Zumalacárregui
et al., 2017), and MontePython (Audren et al., 2013). Again, one can set up the
ROOT environment variable to modify the installation target folder.

#!/bin/bash

ROOT=$HOME

# Install hi_class

cd $ROOT

curl https://codeload.github.com/miguelzuma/hi_class_public/zip/hi_class -o hi_class.zip

unzip hi_class.zip

mv hi_class_public-hi_class hi_class

cd hi_class

make all -j

export STRING=‘ls -1 /Users/ajcuesta/class_public/python/build/ |head -n1‘

export STRING=${STRING:4}

export PYTHONPATH=$ROOT/hi_class/python/build/lib.$STRING/:$PYTHONPATH

echo -e "\nexport PYTHONPATH=$ROOT/hi_class/python/build/lib.$STRING/:\$PYTHONPATH" >> ~/.bashrc

# Install CLASS

export VERSION=2.6.1

cd $ROOT

curl https://codeload.github.com/lesgourg/class_public/zip/v$VERSION -o class_public.zip

unzip class_public.zip

mv class_public-$VERSION class_public

cd class_public

make all -j

export STRING=‘ls -1 /Users/ajcuesta/class_public/python/build/ |head -n1‘

export STRING=${STRING:4}

export PYTHONPATH=$ROOT/class_public/python/build/lib.$STRING/:$PYTHONPATH

echo -e "\nexport PYTHONPATH=$ROOT/class_public/python/build/lib.$STRING/:\$PYTHONPATH" >> ~/.bashrc

# Install MontePython

export VERSION=2.2

cd $ROOT

curl https://codeload.github.com/baudren/montepython_public/zip/$VERSION -o montepython_public.zip

unzip montepython_public.zip

mv montepython_public-$VERSION montepython_public

cd montepython_public

cp default.conf.template default.conf

sed -i -e ’/root/d’ default.conf

echo -e "root=’$ROOT’" >> default.conf

echo -e "path[’cosmo’] = root+’/class_public’" >> default.conf

echo -e "path[’clik’] = root+’/plc-2.0’" >> default.conf

cp default.conf.template hi-class.conf

sed -i -e ’/root/d’ hi-class.conf

echo -e "root=’$ROOT’" >> hi-class.conf

echo -e "path[’cosmo’] = root+’/hi_class’" >> hi-class.conf

echo -e "path[’clik’] = root+’/plc-2.0’" >> hi-class.conf

1http://class-code.net/
2http://baudren.github.io/montepython.html
3http://www.continuum.io
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Step 1: Writing the parameter file

Our goal is to reproduce the cosmological constraints from type-Ia supernovae
in the paper by Betoule et al. (2014).

We base our parameter file on the file jla.param. Note that the JLA like-
lihood requires four nuisance parameters, so it is necessary to add them to the
parameter file. On top of that, we will require (see Section 6 of Betoule et al.
2014) that we vary also the parameter Ωm, or indirectly, the parameter Ωcdm.
In addition, we will ask MontePython to compute the parameter ΩΛ, which
(in this model ΛCDM) can be derived as a function of the free parameters
(ΩΛ = 1 − Ωm). In this way we will have ΩΛ at each MCMC step added to the
chains, so that we do not have to compute that information later, which would
require a little extra effort (see MontePython’s documentation for the -m Der

option).

data.experiments=[’JLA’]

# Cosmological parameters list

data.parameters[’Omega_cdm’] = [0.2562, None, None, 0.008, 1, ’cosmo’]

# Nuisance

data.parameters[’alpha’] = [0.15, None, None, 0.001, 1, ’nuisance’]

data.parameters[’beta’] = [3.559, None, None, 0.020, 1, ’nuisance’]

data.parameters[’M’] = [-19.02, None, None, 0.004, 1, ’nuisance’]

data.parameters[’Delta_M’] = [-0.10, None, None, 0.004, 1, ’nuisance’]

# Derived parameter list

data.parameters[’Omega_m’] = [0, -1, -1, 0,1, ’derived’]

data.parameters[’Omega_Lambda’] = [0, -1, -1, 0,1, ’derived’]

data.cosmo_arguments[’Omega_b’] = 0.05

data.N=10

data.write_step=5

Note that in the ΛCDM model there is no need to vary additional parameters
with this dataset, since distances in this model will only depend on Ωm and
H0, and H0 is completely degenerate with the absolute magnitude M of the
standard supernova. We can save the above input file as lcdm jla.param in
MontePython’s main folder, and we are ready to run our first chains.
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Step 2: Running the chains

Before we start running chains that use the JLA likelihood, MontePython requires
to download the JLA data from the official website. We provide another script
for that:

#!/bin/bash
ROOT=$HOME

# Download JLA data
cd $ROOT
curl http://supernovae.in2p3.fr/sdss_snls_jla/jla_likelihood_v4.tgz -o jla_likelihood_v4.tgz
tar xvzf jla_likelihood_v4.tgz
mkdir $ROOT/montepython_public/data/JLA/
cp jla_likelihood_v4/data/* $ROOT/montepython_public/data/JLA/

Once the parameter file lcdm jla.param has been set up, we can type mkdir
lcdm; mkdir lcdm/jla to create the output folder (following the recommended
structure cosmological model/dataset combination). We want to run sev-
eral chains to provide different initial conditions to sample the parameter space,
and to ensure unimodality of the probability distribution. We also want to
sample the distribution with a large number of points because of the high-
dimensionality of the parameter space4. To run 4 chains for 10000 steps, using
MontePython.py run, we do the following:

for n in {1..4}
do python montepython/MontePython.py run -p lcdm_jla.param -o lcdm/jla/ -N 10000
done

On a laptop, this should take about 3 minutes for each 1000 points computed,
so about half an hour per chain. If this is run sequentially (e.g. in a single-core
processor) it would take about 2 hours to run all four chains. On the other
hand, if one has a multi-core processor, appending the & symbol at the end of
the do command will try to run each instance of MontePython in a different
core, so in a 4-core processor it would run all chains simultaneously, taking half
an hour to complete all of them. Alternatively, if you have Python’s mpi4py

module installed, you can replace the do loop with this command:

mpirun -np 4 python montepython/MontePython.py run -p lcdm_jla.param -o lcdm/jla/ -N 10000

4Remember that MontePython does not stop automatically when a convergence criterion is
met, so one has to perform exploratory runs to study how many points can be enough.
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Step 3: Analyzing the results

Now that we have several tens of thousand points sampling our (5-dimensional)
parameter space, we can obtain parameter constraints, probability distribution
function plots for each parameter, and contour plots showing the marginalized 2-
dimensional constraints for each pair of parameters, which are useful to visualize
correlations between parameters. Also, we can obtain information about the
convergence of our chains given the value of the R− 1 diagnostic. To obtain all
these details, we simply run MontePython.py info on our output folder:

python montepython/MontePython.py info lcdm/jla/

Running the chains to good convergence falls beyond the point of this short
session. However, as pointed out in MontePython’s documentation http://

monte-python.readthedocs.io/en/latest/ one can obtain acceptable R− 1
values (i.e. below 0.01 for every parameter) with an iterative strategy: run-
ning a series of short (∼ 103 points) can help estimate a (noisy, but informa-
tive) parameter covariance matrix that can be used as an input for a second
set of larger chains (with ∼ 104 points) that need to be output to a different
directory. The covariance matrix can be generated with the --want-covmat op-
tion of MontePython.py info, and the corresponding lcdm/jla/jla.bestfit

and lcdm/jla/jla.covmat files can be input to MontePython.py run with the
--bestfit and --covmat options respectively. Alternatively, one can avoid this
iterative strategy by using the recent --update option, which updates the pa-
rameter covariance matrix on-the-fly. A value of 300-500 steps in this --update
option is usually recommended.

Note that one can check if the sampling the parameter space is efficient by
running MontePython.py info to check the acceptance rate in the Metropolis-
Hastings algorithm. The target should be a value between 20% and 25% of
the points being accepted. If it falls towards a very different value, one can re-
run the chains with a different step size parameter by adjusting the -f option
of MontePython.py run to a different value to the default value of 2.4. One
can obtain a short explanation for this value by running MontePython.py run

--help.

The computed constraints will be written to the files lcdm/jla/lcdm jla.v info

and lcdm/jla/lcdm jla.h info, and the generated plots will be saved to the
folder lcdm/jla/plots. However, sometimes we might not be interested in
obtaining the constraints from all parameters (in particular from the nuisance
ones), so we can leave them out from our plots. In order to do this, we have
to use the --extra option of MontePython.py info. This option takes as an
argument the name of a file containing customization options. For example, we
can write the following file and save it to lcdm jla.extra:

info.to_plot = {’Omega_m’, ’alpha’, ’beta’, ’Delta_M’}
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Once we do this, we run MontePython.py info again, but this time with
the customizations contained in the lcdm jla.extra file:

python montepython/MontePython.py info lcdm/jla/ --no-mean --extra lcdm_jla.extra

This will generate the file lcdm/jla/plots/jla triangle.pdf which is sim-
ilar to Figure 9 in Betoule et al. (2014) (except that the plots are displayed in
a lower-triangular arrangement, and in a different order):
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Figure 1: Constraints from the JLA dataset on the ΛCDM cosmological model,
including nuisance parameters from such dataset.
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Constraining a different cosmological model

We have successfully computed constrains on the ΛCDM model from the JLA
dataset. If we are interested in constraining a different model (using this very
same dataset), we can simply specify the parameters that define such model in
the input parameter file, by defining the boundary values and an initial estimate
of their expected value and uncertainty. For example, if we are interested in
constraining the o-ΛCDM model, in which the spatial curvature is a free pa-
rameter, the parameter file (which will be saved with a file name that reflects
the difference in the model, i.e. olcdm jla.param) will contain an additional
entry in the cosmological parameters list:

data.experiments=[’JLA’]

# Cosmological parameters list

data.parameters[’Omega_cdm’] = [0.2562, None, None, 0.008, 1, ’cosmo’]

data.parameters[’Omega_k’] = [0.00, None, None, 0.008, 1, ’cosmo’]

# Nuisance

data.parameters[’alpha’] = [0.15, None, None, 0.001, 1, ’nuisance’]

data.parameters[’beta’] = [3.559, None, None, 0.020, 1, ’nuisance’]

data.parameters[’M’] = [-19.02, None, None, 0.004, 1, ’nuisance’]

data.parameters[’Delta_M’] = [-0.10, None, None, 0.004, 1, ’nuisance’]

# Derived parameter list

data.parameters[’Omega_m’] = [0, -1, -1, 0,1, ’derived’]

data.parameters[’Omega_Lambda’] = [0, -1, -1, 0,1, ’derived’]

data.cosmo_arguments[’Omega_b’] = 0.05

data.N=10

data.write_step=5
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We can take advantage that we have forced MontePython.py run to compute
the parameter ΩΛ and to save it to our chain files, so that we can now use it
to make a plot of the constraints in the Ωm–ΩΛ plane that can be compared to
Figure 15 in Betoule et al. (2014). In this case, we can edit our lcdm jla.extra

file so that it now contains this:

import matplotlib.pyplot as plt

info.to_plot = {’Omega_m’, ’Omega_Lambda’}

info.cmaps = [plt.cm.Blues, plt.cm.Greens, plt.cm.Reds_r, \

plt.cm.Oranges, plt.cm.Purples, plt.cm.gray_r]

info.cm = [’b’, ’g’, ’r’, ’darkorange’, ’purple’, ’k’]

If we run MontePython.py info with this extra file and the --all op-
tion to output every subplot and data in separate files, we will obtain the file
lcdm/jla/plots/lcdm jla.pdf which can be readily compared to Figure 15 in
Betoule et al. (2014):
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Figure 2: Constraints in the Ωm–ΩΛ plane of the o-ΛCDM model from the JLA
dataset (left) and its comparison with constraints from the CMB distance prior
(right; see next section).
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Beyond the basics

The above steps have allowed us to compute cosmological constraints that can
be compared to the recent literature and to generate publication-ready plots
that can be customized to our best scientific interests. One aspect we have not
covered, however, is how to code a (simple) likelihood that allows us to combine
the JLA dataset with constraints from Cosmic Microwave Background (CMB)
data, at least at the background level5. We will call these the CMB distance
priors. We will use the combination of these two datasets to constrain a slightly
more general cosmological model, the wCDM model, in which the dark energy is
no longer described by a cosmological constant but by a fluid with an equation
of state (the relation between the fluid’s pressure and its energy density) equal
to w. The ΛCDM model is a particular case of this model in which w = −1.

In order to do this, let us create a folder below montepython/likelihoods

with the name distance prior. This would serve as a replacement for using
Planck if we are only interested in using the constraints at the background
level and not on the perturbations (i.e. on the parameters Ωb, Ωcdm, and H0,
but not on As or ns, nor on τreio). This should be much faster than running
Planck ’s full likelihood, and hence this exercise is suitable to be run on a laptop.

As described in MontePython’s documentation6, a likelihood is just a direc-
tory which contains a data file and a init .py file. Following equation 18 in
Betoule et al. (2014), our likelihood is computed as shown in the following file7,
saved as montepython/likelihoods/distance prior/ init .py:

import os
import numpy as np
from montepython.likelihood_class import Likelihood_prior

class distance_prior(Likelihood_prior):

# initialisation of the class is done within the parent Likelihood_prior. For
# this case, it does not differ, actually, from the __init__ method in
# Likelihood class.
def loglkl(self, cosmo, data):

omegab, omegac, theta = (
data.mcmc_parameters[p][’current’]*data.mcmc_parameters[p][’scale’]
for p in [’omega_b’, ’omega_cdm’, ’100*theta_s’])

diffvec = np.array([x-mu for x, mu in zip([omegab, omegac, theta], self.centre)])
loglkl = -0.5 * np.dot(diffvec.T, np.dot(self.invcov, diffvec))
return loglkl

5The installation of the full Planck likelihood is out of the scope of this school and its
execution for a large number of points is too slow for a laptop.

6http://monte-python.readthedocs.io/en/latest/likelihoods.html
7This is based on the test gaussian likelihood contained in the folder

montepython/likelihoods.
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Then, we just need to define our fiducial (measured) Planck+WP values for
the parameters Ωbh

2, Ωcdmh
2, and 100θs together with their covariance matrix,

also measured by Planck+WP. These are specified in equations 19 and 20 of Be-
toule et al. (2014). In order to avoid doing a matrix inversion every MCMC step,
instead of coding the covariance matrix, we will store its inverse. These values
are saved into montepython/likelihoods/distance prior/distance prior.py:

# Planck+WP 2013 best fit values for the compressed likelihood {omega_b, omega_cdm, 100*theta_s}.
# (following eq.19 & eq.20 of arXiv:1401.4064,
# see Table 4 of arXiv:1502.01590 for updated values with Planck 2015)
import numpy as np

distance_prior.centre = [0.022065, 0.1199, 1.041]
distance_prior.invcov = [[ 1.98527408e7, 0.09401318e7, -0.23904972e7], \
[ 0.09401318e7, 0.02267473e7, 0.02045338e7], [-0.23904972e7, 0.02045338e7, 0.33599883e7]]

Once we have written these two files, we have coded a new likelihood that
can be readily used by MontePython. In particular, since we are interested
in computing CMB+SNe constraints on the wCDM model, the parameter file
should look like this:

data.experiments = [’distance_prior’,’JLA’]

#------ Parameter list -------
# data.parameters[class name] = [mean, min, max, 1-sigma, scale, role]
# - if min max irrelevant, put to -1 or None (if you want a boundary of -1, use -1.0)
# - if fixed, put 1-sigma to 0
# - if scale irrelevant, put to 1, otherwise to the appropriate factor
# - role is either ’cosmo’, ’nuisance’ or ’derived’

# Cosmological parameters list
data.parameters[’omega_b’] = [ 2.2253, None, None, 0.028, 0.01, ’cosmo’]
data.parameters[’omega_cdm’] = [ 0.1120, None, None, 0.0016, 1, ’cosmo’]
data.parameters[’100*theta_s’] = [ 1.0418, None, None, 3e-4, 1, ’cosmo’]
data.parameters[’w0_fld’] = [ -1.000, None, None, 0.05, 1, ’cosmo’]

# Nuisance
data.parameters[’alpha’] = [0.15 , None, None, 0.001, 1, ’nuisance’]
data.parameters[’beta’] = [3.559, None, None, 0.02, 1, ’nuisance’]
data.parameters[’M’] = [-19.02, None, None, 0.004, 1, ’nuisance’]
data.parameters[’Delta_M’] = [-0.10, None, None, 0.004, 1, ’nuisance’]

# Derived parameter list
data.parameters[’H0’] = [0, None, None, 0, 1, ’derived’]
data.parameters[’Omega_m’] = [0, None, None, 0, 1, ’derived’]
data.parameters[’Omega0_fld’] = [0, None, None, 0, 1, ’derived’]

data.cosmo_arguments[’Omega_Lambda’] = 0

#------ Mcmc parameters ----
# Number of steps taken, by default (overwritten by the -N command)
data.N=10
# Number of accepted steps before writing to file the chain. Larger means less
# access to disc, but this is not so much time consuming.
data.write_step=5
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Now we can make a plot that can be compared to Figure 16 in Betoule
et al. (2014), at least for the Planck+WP+JLA dataset combination. We will
make this plot using CosmoMC’s graphical interface for analysis, named GetDist

GUI. Since this GUI has been developed in Python, we do not need to compile
CosmoMC for this. Instead, we just use the command python python/GetDistGUI.py

to launch the interface. To download CosmoMC we can use this script:

#!/bin/bash
ROOT=$HOME

# Download CosmoMC (no compilation, just for GetDist GUI)
export VERSION=Nov2016
cd $ROOT
curl https://codeload.github.com/cmbant/CosmoMC/zip/$VERSION -o CosmoMC.zip
unzip CosmoMC.zip
cd CosmoMC-$VERSION/
export PYTHONPATH="$ROOT/CosmoMC-$VERSION/python:$PYTHONPATH"
echo -e "\nexport PYTHONPATH=$ROOT/CosmoMC-$VERSION/python:\$PYTHONPATH" >> ~/.bashrc
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Figure 3: Constraints in the w–Ωm plane of the w-CDM model from the JLA
dataset together with CMB distance priors (left) and color-coded according to
their corresponding value of the Hubble constant (right).
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