
Bayesian estimation
of cosmological parameters

with CosmoMC & MontePython
Antonio J. Cuesta

Universidad de Córdoba, Spain
Cosmology School in the Canary Islands, Fuerteventura 18/09/2017



Outline
(keeping it simple...)

• Motivation & Initial remarks

• Generic steps when running MCMC’s

• Introduction to MontePython

• Introduction to CosmoMC



Introduction & 
Motivation



What is all this about?

• Cosmological models have parameters (matter density Ωm, Hubble constant H0, ...)
For example, ΛCDM = { Ωbh2 , Ωch2 , H0 (or θs) ,  As (or ln1010As), ns , τreio }

• We want to know the value and the error of those parameters (mean and rms).

• Ideally, we want the full probability distribution function (pdf) for each parameter, 
and even the full joint distribution for all the parameters together P(θ1,θ2,θ3,...)

• The limits on the possible values of those parameters (1sigma=68.3% confidence, 
2sigma=95.4%, 3sigma=99.7%...) can be obtained in a Bayesian way, in which the 
prior knowledge of the parameters will play an important role P(θ|x)=P(θ)�(x|θ)



What is all this about?

• The resulting constraints on each parameter will depend on these two ingredients:
the DATA you input (each experiment targets a different cosmological probe) 
the MODEL studied (each model contains a different number of free parameters)

• In general, a model with more free parameters will usually provide weaker constraints, 
but also provides a better fit:  more parameters can accommodate more features,
(hence returning a lower χ2) although not necessarily will improve the bayesian evidence



Cosmological 
parameter estimation

You can estimate parameters by eye (not recommended)...

http://planck.cf.ac.uk/cmb-sim

http://planck.cf.ac.uk/cmb-sim
http://planck.cf.ac.uk/cmb-sim


Cosmological
parameter estimation

Or we can estimate parameters quantitatively
In cosmology there are two major codes for this:
CosmoMC and MontePython (& Cosmosis, PICO,...)

http://cosmologist.info/cosmomc/ http://baudren.github.io/montepython.html

http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/
http://baudren.github.io/montepython.html
http://baudren.github.io/montepython.html


Why CosmoMC?

• It has been used in many papers! 
(2000+ citations to Lewis & Bridle 2002)

• Usually new data (likelihood codes) 
are typically available first in CosmoMC

• It has a GUI to analyze the chains!!
(but you can use it for MontePython chains too)

• Its Boltzmann solver, CAMB (based on CMBFAST) 
has been extensively used for a long time

• Lots of tools to run this code in a cluster
Capabilities to run batches of models, MPI/OpenMP parallelization



Why MontePython?

• It is very easy to get started!
(we’ll see that in the afternoon hands-on session)

• It is written in Python: 
the code is easy to read and easy to modify

• Its Boltzmann solver (the code to compute 
the evolution of perturbations) is CLASS: (or hi-class)
a direct transcript of the equations in astro-ph/9506072 (Ma & Bertschinger 1995)
very well commented, so less pain to implement new physics (if not already built-in)

• It is completely agnostic about cosmology: 
if you define a new parameter in CLASS, you don’t need to modify MontePython 

https://arxiv.org/abs/astro-ph/9506072
https://arxiv.org/abs/astro-ph/9506072


Running Markov Chain 
Monte Carlo (MCMC)



MCMC: How-To?

• Step 1: Choose a point in the parameter space (walk the parameter space)

• Step 2: Solve the Boltzmann equations for those values of the parameters which 
are translated into the observables P(k), D(z), Cℓ ...

• Step 3: Evaluate the likelihood of this point for each dataset (CMB, BAO, SNe...) 
by comparing observables with the measurements (evaluation of !2)

• Step 4: Compute the total likelihood, and Accept the point if the likelihood is 
larger (-lnlike smaller), or reject it otherwise, then move to another point (step1)

• Step 5: After you have RUN the chains (i.e. after getting enough points to sample 
the posterior distribution) the final step is to do an ANALYSIS of the results

Breaking the code into individual tasks



Step1: walk a parameter 
space (low-d case)

• If the number of dimensions d is small (1D or 2D), then a grid (discretized) would 
suffice, but this is not true in cosmology (even ΛCDM has already 6 parameters)

• Number of (potentially) visited points: Nd (grows exponentially with d). 
N depends on how fine the spatial discretization (resolution) you want it to be.
Usually one computes the distribution in all the points (even away from the peak).



Step1: walk a parameter 
space (high-d case)

• If the number of dimensions is large, it is not feasible nor efficient to do a grid

• It is better to do a random walk, in which there is some kind of “dragging force” 
towards the high likelihood region plus a thermal bath to move around the peak 
(the goal is not to find the maximum -- it is to sample points from the distribution)

unimodal distribution → different initial conditions will converge to the same region 

“Burn-in”



The Metropolis-
Hastings algorithm

This is exactly what the Metropolis-Hastings algorithm does:

If you are at location x, pick a location y (within some search radius from x):

• If P(y) > P(x), jump there, and store y in the list of visited points

• If P(y) < P(x), then pick a uniform random number r between 0 and 1:

• If r < P(y)/P(x), jump there, and store y to the list of visited points

• If r > P(y)/P(x), do not jump there, and store x (again) to the list of visited points 

Cycle over this loop until you get enough points (~105), or better, 
until a convergence criterion is achieved (see next slide)

Remember: In general x and y will be d-dimensional vectors,
with as many components as parameters you want to determine



• The most common criterion is the R diagnostic by Gelman & Rubin (1992).
This diagnostic is defined for each parameter, so we focus on a single parameter θ.

• Suppose all chains have length N (each chain has N steps) and we have run M chains. 

• Each chain “m” will return a different mean μm and variance σ2m for the parameter θ.

• The variance of the means μm (times N) is called the variance “between chains” B.

• The mean of the variances σ2m is called the variance “within chains” W.

• The R parameter is then defined as (see Brooks & Gelman 2007 for exact formulae):

R̂ =
p

1 + (1/N)(B/W )
So when all chains return roughly the same μm & σm 

if the Central Limit Theorem applies (so B≃W)
we have that R-1 goes to zero as N goes to ∞ Typically, a R-1 value of <0.03 (ideally <0.01) 

for all parameters is considered good enough

When MCMC is 
considered “converged”?



Step 2: Solve the 
Boltzmann equations

• CAMB and CLASS are written to solve efficiently the evolution of each component 
(baryons, neutrinos, photons, dark matter, dark energy, metric...)

• This is the part of the code you do not have to worry about (UNLESS you want 
to constrain non-standard cosmologies, which YOU will have to implement)

(already covered in the previous sessions...)

and many others...

http://camb.info/ http://www.hiclass-
code.net/

http://class-code.net/

http://camb.info/
http://camb.info/
http://camb.info/
http://camb.info/
http://camb.info/
http://camb.info/
http://camb.info/
http://camb.info/


Step 3: Evaluate the 
likelihood(s)

parameter values
at this MCMC step

Likelihood
code

�2
=

✓
theory value�measured value

measured error

◆2
Ωb

likelihood value or
chi-squared value

Ωm

H0

ns

As

"

CosmoMC and MontePython will report -ln (likelihood) = !2/2 (Gaussian case, Wick’s Theorem)

Here “value” can be a MCMC parameter (e.g. H0) or a function of them (an observable, like P(k) or σ8)

WARNING: If “value” is NOT a MCMC parameter, it might depend on the (cosmological) model!

!2�
~x



Cosmological probes
(and most commonly used observables)

CMB

SNe

LSS



Cosmological probes
(and most commonly used observables)

CMB

SNe

LSS



Step 3: Evaluate the 
likelihood(s)

http://pla.esac.esa.int/pla/#home http://supernovae.in2p3.fr/
sdss_snls_jla/ReadMe.html

http://www.sdss3.org/science/
boss_publications.php

http://www.cfhtlens.org/astronomers/
cosmological-data-products

http://pla.esac.esa.int/pla/#
http://pla.esac.esa.int/pla/#
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php
http://www.sdss3.org/science/boss_publications.php


Built-in likelihoods
in CosmoMC & MontePython

Lots of likelihoods to choose from!
(you can also write your own, if you have the data)

CMB from Planck (TT, TE, EE) and others,  BAO (eg. BOSS), SNe (JLA), matter power spectrum, 
Hubble constant, Bicep/Keck CMB B-modes, Euclid/DESI mock likelihoods (for forecasts),....

MontePython likelihoods CosmoMC likelihoods



Tensions!
• When combining different datasets, one should always keep in mind 

that some pair of datasets can produce constraints that do not overlap in the 
d-dimensional parameter space (they might overlap in lower-dimensional plots)

•  This can lead to multi-modal posteriors, (potentially) spurious constraints 
(e.g. claims of non-zero neutrino masses, dynamical dark energy, couplings in 
the dark sector,...) and to probably too many astro-ph.CO postings every day

arXiv:1705.05303

why not use everything?

try to be minimalistic!



Tensions!
• Well-known examples of dataset tensions are:

• The Large-Scale Structure (LSS) measurements of matter fluctuation amplitude σ8

via weak lensing and those derived from the Cosmic Microwave Background (CMB) 

• The local measurement of H0 and its extrapolation from CMB assuming ΛCDM 

• Did we under-estimate uncertainties? Is ΛCDM wrong? Is GR/FLRW wrong? Is Planck wrong? 

Bernal et al. arXiv:1607.05617

KIDS-450, arXiv: 1606.05338

(need for massive neutrinos / dark radiation / non-Λ dark energy / other extensions ?)

DES Y1, arXiv: 1708.01530



Step 4: Decide whether to 
accept the point & Write to file
• Assuming all datasets are independent, 

the total likelihood is the *product* of the individual 
likelihoods, so the -log(likelihoods) are *added*

• For a *fixed* model, different datasets will allow 
different regions of the parameter space. 
If we combine all datasets, the allowed region will be 
the *intersection* of the individual allowed regions

• Following the Metropolis-Hastings algorithm, 
we compare the total likelihood at the new point 
with the likelihood at the previous point. 

• Depending on this comparison, it will move to the 
new point or otherwise, it will count the previous 
point twice (the multiplicity of the point will be >1)



1D Plot
(mean values and standard deviations)

2D Plot
(correlations, degeneracy directions)

Step 5: Analysis of 
the results

Once the chains have converged, we can make different types of 
summary figures or tables to convey the resulting information
This requires marginalization: integrate the d-dim PDF over all other parameters



1D Plot
(mean values and standard deviations)

2D Plot
(correlations, degeneracy directions)

Step 5: Analysis of 
the results

Once the chains have converged, we can make different types of 
summary figures or tables to convey the resulting information
This requires marginalization: integrate the d-dim PDF over all other parameters



Planck’s public chains
• Planck released their full analysis (done with CosmoMC) for a 

comprehensive combination of cosmological models and datasets 

• They can be downloaded at http://pla.esac.esa.int/pla  
(Go to “Cosmology” and then click on “Cosmological parameters)

• The full grid shown in Planck 2015 Paper XIII can be found in the file 
COM_CosmoParams_base-plikHM_R2.00.tar.gz (3.6GB)

• More information can be found at the ESA/Planck wiki:
http://wiki.cosmos.esa.int/planckpla2015/index.php/Cosmological_Parameters

Likelihood
Code

Grid of
chains

http://pla.esac.esa.int/pla
http://pla.esac.esa.int/pla
http://wiki.cosmos.esa.int/planckpla2015/index.php/Cosmological_Parameters
http://wiki.cosmos.esa.int/planckpla2015/index.php/Cosmological_Parameters


Introduction to
MontePython



The CLASSY interface:
CLASS Python wrapper
• Since MontePython and CLASS are written in different languages (Python and C) 

MontePython needs a wrapper to communicate with CLASS at each MCMC step
(there is also a pycamb interface to CAMB)

• Much like Montepython does to run, this wrapper can also be used stand-alone:

• To check if your installation works, open a python terminal and type: 
import classy

• More details can be found at: https://github.com/lesgourg/
class_public/wiki/Python-wrapper  

(from Miguel Zumalacarregui’s notes)

https://github.com/lesgourg/class_public/wiki/Python-wrapper
https://github.com/lesgourg/class_public/wiki/Python-wrapper
https://github.com/lesgourg/class_public/wiki/Python-wrapper
https://github.com/lesgourg/class_public/wiki/Python-wrapper


Running Montepython
The procedure is well described in the official documentation website:
http://monte-python.readthedocs.io/en/latest/example.html

http://monte-python.readthedocs.io/en/latest/example.html
http://monte-python.readthedocs.io/en/latest/example.html


MontePython input file
The input file is where we specify: 

• the experiments (cosmological datasets) we want to use (in folder montepython/likelihoods)

• the values of the parameters that we want fixed (“cosmo_arguments”)

• the parameters we want to measure (“cosmo”)

• the parameters required to be marginalized by some likelihoods (“nuisance”)

• the extra parameters we want to be computed and written to file (“derived”)

• other defaults like number of steps (override if specified), etc.



Running chains with 
MontePython run

• Each instance of  MontePython run  will run only one chain, unless 
you run the command with MPI (requires the python module mpi4py)

• You can specify: an input file, an output folder, the number of steps (the code 
will not stop at convergence), the best fit point and a proposal covariance matrix
(these two are needed for faster convergence, but you will have these files only 
if you did a previous shorter run or a similar run)

• You can also specify a step size (default -f 2.4, target should be ~20% to 25% 
acceptance rate), sampling method (e.g.MultiNest), and not use fast/slow sampling

• You can update the proposal covariance matrix every 500 steps with the option 
--update 500 (it will use all chains to recompute it, even without MPI)

• Example: if you want to run 4 chains with 105 points each:

The first run creates a log.param file in the output folder, so that if you (mistakenly) try to run a chain 
in that folder with a different input file, the old configuration overrides the input file (prevents mix-ups)



Plotting your results 
with MontePython info
• Customize your plots!! (use the --extra option 

if you have saved these options into a file) 

• Lots of layout options: font size, legend style, line width, no-mean, ...

• Change the number of bins for credible intervals (less bins = less resolution)

• Do Gaussian smoothing or increase interpolation (for smoother plots)

• To do operations with the parameters: 
info.redefine = {‘new_param’:’5*old_param+10’}

• To rename a parameter in the output plots: 
info.to_change={‘old_name’:‘new_name’}

• To plot and compute credible intervals for only some specific parameters:
info.to_plot=[‘new_param’,‘new_name’,‘old_param2’,...]



Plotting your results 
with MontePython info

To compare the constraints on two different models from a fixed dataset
(or on a single cosmological model from two different datasets)

arXiv:1511.05983 arXiv:1511.03049



Creating tables from
MontePython info

You can also use the output *tex files to compile LaTeX tables, including: 

• All the parameters (‘cosmo’, ‘derived’, ‘nuisance’,...) especified in to_plot

• Their best-fit values and their mean values

• Their 1-sigma and 2-sigma credible intervals (sigma and 95%)

• Other info like the maximum likelihood found and minimum value of !2 



HELP!!!

• MontePython is well documented:
http://monte-python.readthedocs.io/en/latest/

• Quick access to all the options in each mode:

• The options to run chains are:
python montepython/MontePython.py run --help

• The options to plot and analyze chains are:
python montepython/MontePython.py info --help

http://monte-python.readthedocs.io/en/latest/
http://monte-python.readthedocs.io/en/latest/


Introduction to 
CosmoMC



Running CosmoMC

• Running a set of N chains is as simple as executing the compiled code 
./cosmomc with an input file params.ini in the command line
(but you need to compile it first! Needs Intel Fortran 14 or GCC 6)

• CosmoMC also offers a simple way to generate job scripts and submit them
to run the code in a computing cluster (e.g. Torque, MOAB, SLURM)

• When running in a cluster, each chain will be parallelized (using OpenMP) over 
a number of processors equal to coresPerNode over chainsPerNode
The communication between chains will be done via MPI communication 



CosmoMC input file
The input file for CosmoMC is named params.ini where we can set up:

Planck2015 highL temperature+polarization
Planck2015 lowL temperature+polarization
Planck2015 lowL temperature only
Planck2015 CMB lensing

BAO from BOSS+MGS+6dF(+WiggleZ)
WiggleZ galaxy power spectrum
SDSS galaxy power spectrum
CFHTLens weak lensing

Also, SNe from JLA, etc.

Output folder and chain file names

Execution mode (0=run chains)

Likelihoods
(datasets)
you want
to include 
(each one 
is in turn a

settings file)

Model parameters:
Values for fixed ones 
and ranges for those

to be measuredEasily implement Gaussian priors



GetDist: Analysis of 
CosmoMC chains

CosmoMC’s traditional (text-only) analysis tool is GetDist. Besides outputting info 
to the screen, it creates files with parameter bounds (margestats), covariance matrices, 
and python scripts to generate plots with matplotlib (in the plot_data folder)
The analysis settings can be modified in the distparams.ini file

Syntax: ./getdist distparams.ini chains/root

MCMC Convergence status

number of chains read (check that these are all your chains)

number of parameters (cosmo+nuisance+der)

warnings about non-
converged parameters

parameters defined in distparams.ini but not in the chains



GetDist: Analysis of 
CosmoMC chains

CosmoMC’s traditional (text-only) analysis tool is GetDist. Besides outputting info 
to the screen, it creates files with parameter bounds (margestats), covariance matrices, 
and python scripts to generate plots with matplotlib (in the plot_data folder)
The analysis settings can be modified in the distparams.ini file

Syntax: ./getdist distparams.ini chains/root

MCMC Convergence status

number of chains read (check that these are all your chains)

number of parameters (cosmo+nuisance+der)

warnings about non-
converged parameters

parameters defined in distparams.ini but not in the chains



GetDist GUI: 
MCMC graphical analysis
• Getdist’s graphical interface allows the interactive analysis of CosmoMC 

but also MontePython chains, making it easy to visually inspect the results

• It has an option to create tables with parameter bounds and export to LaTeX

More examples are shown at http://getdist.readthedocs.org/en/latest/plot_gallery.html

http://getdist.readthedocs.org/en/latest/plot_gallery.html
http://getdist.readthedocs.org/en/latest/plot_gallery.html


HELP!!!

• CosmoMC has a complete README website:
http://cosmologist.info/cosmomc/readme.html

• It contains individual pages for many topics:
Planck likelihood, Python modules, GetDist GUI, running grids of models/datasets,...

• See also the CosmoCoffee forum:
http://cosmocoffee.info/

http://cosmologist.info/cosmomc/readme.html
http://cosmologist.info/cosmomc/readme.html
http://cosmocoffee.info/
http://cosmocoffee.info/


Thank you

ajcuesta@uco.es



Supplementary slides



Structure of a chain file
• A chain file is just a text file, you can open it with any editor or manipulate it through any 

python script (or the way that is most convenient for you)

• Each row is a MCMC step. Each column is each one of the parameters in this order: 
cosmological, nuisance, and derived. Check the *.paramnames file to find out the ordering 

• The first two columns are the multiplicity (or number of steps spent in that point) 
and the -log(likelihood), or “loglike”, which is just 0.5 times the total χ2 value.

LCDM parametersmult & loglike

1MCMC 
step



List of CosmoMC’s 
valid parameter names

You can see a complete list in the file paramnames/params_CMB.paramnames
and also in Planck’s documentation http://wiki.cosmos.esa.int/planckpla2015/
images/b/b9/Parameter_tag_definitions_2015.pdf 

http://wiki.cosmos.esa.int/planckpla2015/images/b/b9/Parameter_tag_definitions_2015.pdf
http://wiki.cosmos.esa.int/planckpla2015/images/b/b9/Parameter_tag_definitions_2015.pdf
http://wiki.cosmos.esa.int/planckpla2015/images/b/b9/Parameter_tag_definitions_2015.pdf
http://wiki.cosmos.esa.int/planckpla2015/images/b/b9/Parameter_tag_definitions_2015.pdf


Parameter Covariance Matrix
• Choosing a good covariance matrix is important because 

it HELPS the chain to converge faster

• It gives you the optimal sampling step size
in each direction of the parameter space
(diagonal elements of the matrix)

• But also, if the parameters are correlated,
it also gives the direction where to move 
when we change one of the parameters
(off-diagonal elements)

Cij =

✓
�✓1✓1 �✓1✓2

�✓1✓2 �✓2✓2

◆
Rij =

Cij

�✓i�✓j

=

✓
1 ⇢✓1✓2

⇢✓1✓2 1

◆

�✓i✓i = �2
✓i

Covariance matrix Correlation matrix



• Let’s make a copy of this likelihood to batch2/HSTnew.ini 
because we want to use the new 2.4% determination of H0 
by Riess et al. 2016  http://arxiv.org/abs/1604.01424

• Now you can INCLUDE in your parameter file this new likelihood batch2/HSTnew.ini

HSTnew

73.24
1.74

Modifying a (simple) 
CosmoMC likelihood

P (H0) / e�0.5(H0�73.24
1.74 )

2

http://arxiv.org/abs/1604.01424
http://arxiv.org/abs/1604.01424

