Introduction to Data Minig in Education

Cristóbal Romero Morales

(cromero@uco.es)

Department of Computer Sciences and Numerical Analysis. University of Córdoba

What do we call it?

- Statistics
- Machine Learning
- Data mining
- Knowledge Discovery in Data
- Big Data

...?

- Data Analytics
- Data Science

Same Core Idea: Finding Useful Patterns in Data

Different Emphasis

"In god we trust, all others must bring Data" William Edwards Deming (1900-1993)

Introduction

- The development of web-based educational systems has been rising exponentially in the recent years.
 - These systems produce information of high educational value, but usually so abundant that it is impossible to analyze it manually.
 - Tools to automatically analyze this kind of data are needed.
- Educational institutions have information systems that store plenty of interesting information.
 - This available information can be used to improve Strategic Planning of these institutions. In this case, tools to analyze that data automatically are also needed.

Introduction What is EDM?

Educational data mining (EDM) is the application of data mining techniques to educational environments.

Introduction Multidisciplinary domain

Educational data mining (EDM) is a multidisciplinary domain that is an intersection of 3 domains: computer science, education, statistics.

Introduction Other areas closely related to EDM

Learning analytics

□ The measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimising learning and the environments in which it occurs.

Academic analytics

□Bussiness intelligence applied to institutional academic data.

Teaching analytics

Introduction EDM and Learning Analytics progression

Evolution of EDM and LA references in Google Scholar

7

Process and actors

The Lifecycle of Educational Data Science:

- The knowledge that can be discovered from educational data is very diverse.
- Our main objective when we applied EDS techniques depends on:
 Who is addressed the knowledge we will extract
 - Students
 - Teachers
 - Academic authorities
 - What kind of information is available?
 - A priori
 - A posteriori
 - □ What is our environmment of interest?
 - Traditional learning
 - Distance learning

Data

Types of Educational Environments

Data Characteristics

- The information come from different sources of data.
- There are a lot of incomplete and loss data because not all students carry out all the activities.
- User/Students are clearly identified.
- There is a great number of available instances and attributes that may required tasks of filtering for selecting the most important.
- Educational data have different level of granularity.
- Some transformation such as discretization of number are normally used for improving the comprehensibility of data and the obtained models.

Low level tasks. Similar to ML/DM, but the knowledge we want to discover is extracted from educational data.

High level tasks. Try to solve a problem in the educational context. Involves one or more low level tasks, as well as the interpretation of results.

SPECIFIC (EDM)

Tasks Low level (ML/DM) tasks

Predictive tasks

- □Supervised. Output information is available □Examples
 - Classification
 - Regression

Descriptive tasks

- □Unsupervised. Output information is **not** available
- □Examples
 - Association
 - Clustering

Tasks High level tasks

- Analysis & Visiualization.
- Providing Feedback.
- Recomendation.
- Predicting Performance.
- Student Modeling.
- Detecting Behavior.
- Grouping Students.
- Social Network Analysis.
- Developing Concep Map.
- Planing & Scheduling.
- Constructing Courseware.

Publications Books

- <u>Data Mining in E-Learning</u>.
 C. Romero & S. Ventura (Eds).
 Editorial WIT Press, 2006.
- Handbook of Educational Data Mining.
 C.Romero, S. Ventura,
 M. Pechenizky, R. Baker. (Eds).
 Editorial CRC Press, Taylor & Francis Group. 2010.
- <u>Handbook of Learning Analytics</u>.
 C. Lang, G. Siemens, A. Wise, D. Gašević SOLAR, 2017.

Charles Lang George Siemens Alyssa Wise Dragan Gałević

parning Analyti

Publications

• JOURNALS:

- Journal of Educational Data Mining
- Journal of Learning Analytics
- Journal of Artificial Intelligence in Education

<u>CONFERENCES:</u>

- International Conference on Educational Data Mining (EDM)
- Learning Analytics & Knowledge (LA)
- International Conference on Artificial Intelligence in Education (AIED)
- ACM Conference on Learning at Scale (I@s)

Publications Surveys/Reviews

- Baker, R., Yacef, K. The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, 1, 1, 3-17. 2009.
- C. Romero, S. Ventura. Educational Data Mining: A Review of the State-of-the-Art. IEEE Transactions on Systems, Man, and Cybernetics--Part C: Applications and Reviews. 40:6, pp. 601 – 618. 2010.
- Karen Cator. Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics. Report of the U.S. Office of Educational Technology. 2012.
- Romero, C., & Ventura, S. Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. 2020.

DM Software

Weka is one of the most popular software packages for Data Mining

http://www.cs.waikato.ac.nz/~ml/weka/

This is a very popular DM tool, developed in Java

http://rapidminer.com

R is a programming language that was initially created to perform statistics, but it has also used in DM

https://www.r-project.org/

Free EDM datasets

Datasets	URL	Descripction
Canvas Network dataset	https://dataverse.harvard.edu/dataset.xhtml?persistentl d=doi:10.7910/DVN/1XORAL	De-identified data from Canvas Network open courses (running January 2014 - September 2015), along with related documentation.
DataShop	https://pslcdatashop.web.cmu.edu/index.jsp?datasets=p ublic	LearnSphere's DataShop provides a central repository to secure and store research ITS data and set of analysis and reporting tools.
HarvardX-MITx dataset	https://dataverse.harvard.edu/dataset.xhtml?persistentl d=doi:10.7910/DVN/26147	De-identified data from the first year of MITx and HarvardX MOOC courses on the edX platform along with related documentation.
MOOC-Ed Dataset	https://dataverse.harvard.edu/dataset.xhtml?persistentl d=doi:10.7910/DVN/ZZH3UB	Communications taking place between learners in two offerings of the Massively Open Online Course for Educators (MOOC-Eds).
Open University Learning Analytics Dataset	https://analyse.kmi.open.ac.uk/open_dataset	It contains data about courses, students and their interactions with Moodle for seven selected courses.
Student Performance Dataset	https://archive.ics.uci.edu/ml/datasets/Student+Perform ance	This data approach student achievement in secondary education of two Portuguese schools.

Thanks.

Questions?