R. Joan-Arinyo

Grup d'Informàtica a l'Enginyeria
E.T.S. d'Enginyeria Industrial de Barcelona
Universitat Politècnica de Catalunya
Av Diagonal 647, 8a. 08028 Barcelona - Spain
Tel.: +34934016669
Fax: +34934016050
E-mail: robert@lsi.upc.edu

M.V. Luzón

Departamento de Lenguajes y Sistemas Informáticos
E.T.S. Ingenierías Informática y Telecomunicación
Universidad de Granada
C/ Periodista Daniel Saucedo Aranda s/n. 18071 Granada - Spain
Tel.: +34958240637
Fax: +34958243179
E-mail: luzon@ugr.es

E. Yeguas

Departamento de Informática y Análisis Numérico
Escuela Politécnica Superior
Universidad de Córdoba
Campus Rabanales. Marie Curie (C3 - Anexo). 14071 Córdoba - Spain
Tel.: +34957212660
Fax: +34957218630
E-mail: eyeguas@uco.es

 

 

See (Hoffmann and Joan-Arinyo, 2005) and references therein for an extensive analysis of work on constraint solving. In (Bouma et al, 1995) the Root Identification Problem is defined. In (Luzón, 2001; Luzón et al, 2003) is shown how the Root Identification Problem can be formulated as an optimization problem and how metaheuristics, among them evolutionary algorithms, can be applied to solve it.

  • The name of the instance: X_Y (problem size 18) or X (problem sizes 19 and 20), shown in the first column.
  • The geometric problem or Figure which it represents: image in postscript format (.ps file) and geometric elements and set of constraints which define the problem in text format (.bcn file). It is shown in the second column.
  • The set of additional predicates which identify the intended solution instance: number of additional predicates defined and file in text format (.prdY, where Y corresponds to the instance X_Y, or .prd for instance X) containing the predicates. In each predicate, -1 is used to indicate point (first argument) on the left of the line defined by the other two points (second and third arguments) and 1 is used to indicate on the right. This information is presented in the third column.
  • The whole search space corresponding to the instance in a text format file (.ordY, where Y corresponds to the instance X_Y, or .ord for instance X). The first line of the file presents the number of geometric elements (18, 19 or 20), the second line of the file presents the number of additional predicates and the remaining lines present each possible solution (decimal number) together with the number of additional predicates which it fulfills (-1 if the solution is not feasible). This file is available for downloading in the fourth column of the Table.
  • The number of solutions which fulfill all the predicates defined for the instance (fifth column).
Instance Figure Additional Predicates Search space Optimal solutions
1_1 fig01_18.ps (fig01_18.bcn) 18 (fig01_18.prd1) fig01_18.ord1 4192
1_2
52
1_3
100
2_1 fig02_18.ps(fig02_18.bcn) 30 (fig02_18.prd1) fig02_18.ord1 24
2_2
8
2_3
8
3_1 fig03_18.ps(fig03_18.bcn) 24 (fig03_18.prd1) fig03_18.ord1 4
3_2
1
4_1 fig04_18.ps(fig04_18.bcn) 26 (fig04_18.prd1) fig04_18.ord1 24
4_2
24
4_3
16
5_1 fig05_18.ps(fig05_18.bcn) 40 (fig05_18.prd1) fig05_18.ord1 32
5_2
16
5_3
16
6_1 fig06_18.ps(fig06_18.bcn) 38 (fig06_18.prd1) fig06_18.ord1 1
6_2
2
6_3
76
7_1 fig07_18.ps(fig07_18.bcn) 46 (fig07_18.prd1) fig07_18.ord1 1
7_2
2
7_3
3
8_1 fig08_18.ps(fig08_18.bcn) 28 (fig08_18.prd1) fig08_18.ord1 16
8_2
2
8_3
2
9_1 fig09_18.ps(fig09_18.bcn) 27 (fig09_18.prd1) fig09_18.ord1 4
9_2
8
9_3
2
10_1 fig10_18.ps(fig10_18.bcn) 22 (fig10_18.prd1) fig10_18.ord1 105
10_2
15
10_3
1

Table 1: Benchmark of Root Identification Problem instances for problem size 18.

 

Instance Figure Additional Predicates Search space Optimal solutions
1 fig01_19.ps (fig01_19.bcn) 24 (fig01_19.prd) fig01_19.ord 4
2 fig02_19.ps (fig02_19.bcn) 24 (fig02_19.prd) fig02_19.ord 16
3 fig03_19.ps (fig03_19.bcn) 24 (fig03_19.prd) fig03_19.ord 18
4 fig04_19.ps (fig04_19.bcn) 27 (fig04_19.prd) fig04_19.ord 16
5 fig05_19.ps (fig05_19.bcn) 22 (fig05_19.prd) fig05_19.ord 8
6 fig06_19.ps (fig06_19.bcn) 22 (fig06_19.prd) fig06_19.ord 3
7 fig07_19.ps (fig07_19.bcn) 23 (fig07_19.prd) fig07_19.ord 16
8 fig08_19.ps (fig08_19.bcn) 24 (fig08_19.prd) fig08_19.ord 16
9 fig09_19.ps (fig09_19.bcn) 23 (fig09_19.prd) fig09_19.ord 4
10 fig10_19.ps (fig10_19.bcn) 22 (fig10_19.prd) fig10_19.ord 8
11 fig11_19.ps (fig11_19.bcn) 24 (fig11_19.prd) fig11_19.ord 8
12 fig12_19.ps (fig12_19.bcn) 24 (fig12_19.prd) fig12_19.ord 1

Table 2: Benchmark of Root Identification Problem instances for problem size 19.

 

Instance Figure Additional Predicates Search space Optimal solutions
1 fig01_20.ps (fig01_20.bcn) 30 (fig01_20.prd) fig01_20.ord 4
2 fig02_20.ps (fig02_20.bcn) 30 (fig02_20.prd) fig02_20.ord 12
3 fig03_20.ps (fig03_20.bcn) 30 (fig03_20.prd) fig03_20.ord 30
4 fig04_20.ps (fig04_20.bcn) 26 (fig04_20.prd) fig04_20.ord 39
5 fig05_20.ps (fig05_20.bcn) 31 (fig05_20.prd) fig05_20.ord 36
6 fig06_20.ps (fig06_20.bcn) 26 (fig06_20.prd) fig06_20.ord 8
7 fig07_20.ps (fig07_20.bcn) 24 (fig07_20.prd) fig07_20.ord 16
8 fig08_20.ps (fig08_20.bcn) 27 (fig08_20.prd) fig08_20.ord 16
9 fig09_20.ps (fig09_20.bcn) 27 (fig09_20.prd) fig09_20.ord 8
10 fig10_20.ps (fig10_20.bcn) 27 (fig10_20.prd) fig10_20.ord 2
11 fig11_20.ps (fig11_20.bcn) 27 (fig11_20.prd) fig11_20.ord 4
12 fig12_20.ps (fig12_20.bcn) 27 (fig12_20.prd) fig12_20.ord 2

 

RANDOMLY GENERATED INSTANCES CORRESPONDING TO LARGE PROBLEM SIZES

Problem size Geometric constraints Extra predicates
25
27
50*
30
37
50*
35
47
50*
50
77
50*
60
97
75
70
107
80
80
117
90
100
147
100

*Maximum limit for extra predicates generated.

Table 4: Features for randomly generated instances belonging to each problem size.

 

  • Instance name : 1-10, shown in the first column.
  • Geometric problem image (geometric elements and constraints): postcript format image (.eps file). It is shown in the second column.
  • Geometric problem data: XML format file (.txt file). It contains geometric elements (<geometry></geometry>), geometric constraints (<constraints></constraints>) together with constraint parameters (<parameters></parameters>) and extra predicates (<additionalPredicates></additionalPredicates>). Geometric elements belong to one of two different types: points (pxy) and lines (lxy). Geometric constraints belong to one of four different types: two-point distance (dpp), point-line distance (dpl), two-line angle (all) and point on line (opl). Extra predicates can be: clockwise three points (clockwise) and point on the left of a line (pointlineorientation). This file is available in the third column.
  • Concrete number of extra predicates. Only for problem sizes with a maximum limit for them (see Table 4).
Instance Figure Problem data Extra predicates
1
42
2
43
3
41
4
43
5
42
6
40
7
38
8
40
9
43
10
42

Table 5: Randomly generated benchmark for problem size 25.

 

Instance Figure Problem data Extra predicates
1
43
2
41
3
43
4
40
5
43
6
42
7
45
8
43
9
44
10
45

Table 6: Randomly generated benchmark for problem size 30.

 

Instance Figure Problem data Extra predicates
1
45
2
44
3
45
4
46
5
46
6
45
7
42
8
43
9
43
10
43

Table 7: Randomly generated benchmark for problem size 35.

 

Instance Figure Problem data Extra predicates
1
44
2
46
3
44
4
45
5
44
6
45
7
45
8
45
9
43
10
43

Table 8: Randomly generated benchmark for problem size 50.

 

Instance Figure Problem data
1
2
3
4
5
6
7
8
9
10

Table 9: Randomly generated benchmark for problem size 60 .

 

Instance Figure Problem data
1
2
3
4
5
6
7
8
9
10

Table 10: Randomly generated benchmark for problem size 70.

 

Instance Figure Problem data
1
2
3
4
5
6
7
8
9
10

Table 11: Randomly generated benchmark for problem size 80.

 

Instance Figure Problem data
1
2
3
4
5
6
7
8
9
10

Table 12: Randomly generated benchmark for problem size 100.

 

Borcea C, Streinu I (2002) On the number of embeddings of minimally rigid
graphs. SoCG’02.

Bouma W, Fudos I, Hoffmann C, Cai J, Paige R (1995) Geometric constraint solver. Computer Aided Design 27(6):487–501

Hoffmann C, Joan-Arinyo R (2005) A brief on constraint solving. Computer-Aided Design and Applications 2(5):655–663

Luzón M (2001) Resolución de restricciones geométricas. Selección de la solución deseada. PhD thesis, Dept. Informática, Universidad de Vigo, written in Spanish

Luzón MV, Joan-Arinyo R, Soto A (2003) Genetic algorithms for root multiselection in constructive geometric constraint solving. Computer & Graphics 27:51–60

Vila S (2003) Contribution to Geometric Constraint Solving in Cooperative Engineering.
PhD thesis, Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain.

ACKNOWLEDGEMENTS