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A B S T R A C T

Surveillance systems are very important to prevent situations where armed people appear. To minimize human
supervision, there are algorithms based on artificial intelligence that perform a large part of the identification
and detection tasks. These systems usually require large data processing servers. However, a high number of
cameras causes congestion in the networks due to a large amount of data being sent. This work introduces a
novel system for identifying individuals with weapons by leveraging Edge, Fog, and Cloud computing. The key
advantages include minimizing the data transmitted to the Cloud and optimizing the computations performed
within it. The main benefits of our proposal are the high and simple scalability, the immediacy of the detection,
as well as the optimization of processes through distributed processing of high performance in the Fog layer.
Moreover, the structure of this proposal is suitable for 5G camera networks, which require low latency and
quick responses.
1. Introduction

Detection and surveillance systems have evolved as technology.
However, despite the many improvements, in most cases, they remain
non-automated. The number of cameras that are being installed is
growing exponentially, while the volume of information that one per-
son can monitor is limited. One of the main tasks of surveillance camera
supervision is the identification of armed people.

The expansion of the Internet of Things (IoT) (Dhirani et al., 2017),
Computer Vision, and, Deep Learning, have allowed the emergence of
new automated systems (Mohanapriya and Mahesh, 2020), especially
success in smart cities applications (Songhorabadi et al., 2023). How-
ever, this solution is partial, because, at the same time, the number
of hardware devices that capture information that must be sent to
the Cloud and processed also increases. In fact, optimizing commu-
nications in sensor networks aimed at detecting events is a subject
of recent scientific interest (León-García et al., 2018, 2019; Cob-Parro
et al., 2021). Identifying large data transfers in a computer network
is very important for understanding and managing network traffic.
However, current methods for measuring network traffic in real-time
have problems because they struggle to accurately identify these big
data transfers. This is because some data transfers are much larger
than others, and the speed at which data is transferred can change
quickly. As a result, existing methods often make mistakes and have
limited accuracy, especially when they try to use only a small amount
of memory to store information (Xiong et al., 2024).
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Edge computing could allow data to be processed close to the end
devices instead of sending raw data to be processed in the Cloud, re-
ducing communications and Cloud computing costs (Tuli et al., 2023).
However, Edge devices usually are restricted by limited resources and
low-performance computing. So, to solve these limitations, Fog comput-
ing emerges as an interesting paradigm, providing network infrastruc-
ture with high-performance resources (Zolghadri et al., 2024). Energy
consumption is also a challenge in camera sensor networks (Castillo-
Secilla et al., 2010; SanMiguel and Cavallaro, 2017; Dao et al., 2017),
so saving data communications and the number of transmissions is
imperative (Azizi et al., 2022), furthermore when the network nodes
are mobile (Ostrowski et al., 2023). Moreover, Fog computing allows
distributed processing. This feature is also interesting because several
nodes could process different algorithms for different purposes, for
instance, to identify drones appearing in the scene (Taha and Shoufan,
2019), vehicles and their license plate (Olivares et al., 2010), peo-
ple suffering fever (Rodriguez-Lozano et al., 2019), animals (Zhou
et al., 2021), etc. Fog computing together with 5G networks propi-
tiated a new technology called Open-RAN (ITU-T, 2018). Open-RAN
technology (Liyanage et al., 2023) is a new trend that facilitates the
inclusion of network infrastructure elements with processing capacity
(Fog computing) for 5G and 6G Next Generation networks (iGillott,
2020; Deloitte, 2021).
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data mining, AI training, and similar technologies. 
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The main motivation of this work is to present a new surveil-
lance system for weapon detection and face recognition, based on
the efficient use of computational resources in the Fog layer. The
main benefits are optimizing communication bandwidth and saving
transmission energy, avoiding data and computing saturation in the
Cloud layer.

This paper is organized as follows: Section 2 presents the state of
the art of the computing paradigm and surveillance systems. Section 3
shows how is designed the new surveillance system. Results are pre-
sented in Section 4, followed by discussion in Section 5. Finally, the
main contributions and future works are presented in Section 6.

2. Background

In this section, we present the foundations of two different tech-
nologies covered in this paper: the computing paradigm for the IoT and
proposals for weapons detection systems.

2.1. The IoT computing paradigm

Fog computing (FC) has become a linchpin for Fifth Generation
(5G) networks (Meng et al., 2020). FC and 5G are updating the data
transmission using new technological approaches that are intelligently
processing data to provide enhanced communications. Fog computing
being an extension of cloud computing plays an important role along
with 5G networks (Khalid et al., 2020). Fog computing aims to improve
the latency and response time by providing the computer and storage
facilities near to the end-user connected with 5G networks (Buyya and
Srirama, 2019).

• Edge computing (Dao et al., 2020) is based on the principle of
making the processing as closer to the data generators as possible.
Wireless sensor networks (WSN) and most IoT devices suffer
from low-performance computing with strict restrictions due to
the low energy available. Typically, Edge computing performs
pre-processing tasks and adapts data for Fog or Cloud layers.

• Fog computing (Zolghadri et al., 2024) provides cloud services
and high-performance computing using network infrastructure
nodes, allowing distributed computing and low latency response
to the edge devices.

• Cloud computing (Bhowmik, 2017) is the most popular comput-
ing paradigm for IoT applications based on artificial intelligence
technology during the last decades. The cloud provides several
services to connected clients. Besides, it supplies a computing
infrastructure composed of large servers equipped for high data
storage and high-performance computing.

.2. Detection and classification algorithms

In order to provide a new surveillance system that is able to de-
ect weapons and recognize the faces of the weapon holders for the
dentification of those persons, we will review the image processing
echniques for detection and classification. The most popular algo-
ithms used for detection and classification could be divided into two
ategories (Warsi et al., 2020): Computer Vision Algorithms and Deep
earning Algorithms.

The Computer Vision approaches are based on understanding the
nternal structure of the images. Current trends in Computer Vision Al-
orithms for feature detection are mainly designed using color segmen-
ation, interest points, shapes, and edge detectors. Active Appearance
odels are based on matching the shape and appearance of objects

o a new image using a statistical model (Cootes et al., 2001). Harris
orner detector algorithm is commonly used in extracting corners of
n image (Harris and Stephens, 1988) as a previous step for further
dentification stages. Different elements in an image are usually con-
ormed with different colors. Therefore, color-based segmentation is
2 
another technique widely used to make the first step of a detection
method. This type of segmentation can be obtained using the well-
known and efficient k-means algorithm (Tiwari and Verma, 2015).
However, color-based segmentation (Sasikaladevi and Mangai, 2018)
could fail if the object shares the same color with its environment.
Other techniques rely on detecting the outline of the elements in the
images. For this purpose, edge detectors are used with a large variety of
methods. However, edge detector algorithms could be strongly affected
by variations in the light conditions. Thus, low light scenes could lead
to undetect many contours of objects. To overcome this problem, the
LIP-Canny algorithm (Palomar et al., 2010) was proposed. It is an edge
detection algorithm based on a robust mathematical model closer to
the human vision system, which is invariant to illumination variations.
However, it increases the computational cost.

In conclusion, most of these detection methods depend on the
quality and angle of the image. Images with noise and occlusion could
be badly detected. It has been proved that it is hard to detect the
corners, shapes, and edges in occluded images (Sánchez et al., 2018).

Deep Learning (DL) Algorithms are also used for detection and
classification. These algorithms are based on deep Neural Networks
(NN) (Zhao et al., 2019), such as, Convolutional Neural Networks
(CNN) (O’Shea and Nash, 2015), Faster R-CNN (Ren et al., 2017), and
You Only Look Once (YOLO) (Redmon et al., 2016). These algorithms
learn the features during a training process. They require a lot of data
for training. Moreover, they are even able to detect occluded objects
if a huge amount of data is provided. In the case of CNN, Faster R-
CNN, and YOLO, the data needs to be labeled before the training, this
is supervised learning. Thus, the learning process for the detection is
made by making the computer find internal inferences without provid-
ing specific procedures for obtaining the desired features of the objects.
This is the main difference between these techniques based on DL and
those techniques based on Computer Vision. For the learning process,
two important datasets are used: Imagenet (Fei-Fei et al., 2004) and
Terahertz Human Dataset (Zhang et al., 2018). These datasets present
26,505 images with the human body as the main reference. However,
several authors used other different customized datasets.

We will briefly describe the main DL techniques in the following
paragraphs.

• CNN (O’Shea and Nash, 2015) consists of an architecture com-
posed of an input layer, several hidden layers, and one output
layer. In any feed-forward neural network, any middle layers
are called hidden ones, because their inputs and outputs are
masked by the activation function and final convolution. In a
convolutional neural network, the hidden layers include some
layers that perform convolutions. Although CNNs were invented
in the 1980s, their breakthrough in the 2000s required fast im-
plementations on graphics processing units (GPUs). To check the
accuracy of the network, error functions are used. If the error rate
is too high, then it will pass back to the first layer and update
the weights where required. A technique known as backpropa-
gation is used to calculate the weights that need to be updated.
The process is repeated until the required level of accuracy is
achieved. Asrith et al. (2018) trained their CNN by using very
low-resolution images to detect and recognize human faces and
weapons in real-time. However, their results and discussion are
more focused on face detection and do not reflect any information
about weapon detection. Gelana and Yadav (2019) proposed a
method to decrease the complexity and rise the accuracy by using
edge information as a feature to identify firearms.

• CNN OverFeat (Sermanet et al., 2014) are based on a sliding-
window approach, where the classifier is trained on the center
image first. Afterward, the classifier is applied to every location
of the target image. The main drawback of using any sliding-
window approach is its slowness. Therefore, it is not appropriate
for real-time object detection.
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• R-CNN (Girshick et al., 2014) extracts 2000 regions warped into
squares and forwarded to a CNN. This neural network generates
a 4096-dimensional feature vector. Then, it performs a regression
algorithm to find the bounding boxes of the classified object.
This method requires huge computation power. Thus, it is not
appropriate for real-time object detection.

• Fast R-CNN (Girshick, 2015) the same approach as R-CNN. But
here, it does not calculate the regions. Instead, it feeds the image
directly to CNN and generates feature maps. From this convolu-
tional feature map, the region proposals are identified and warped
into squares, and using the ROI (region of interest) pooling layer,
the shape changes to a fixed size, which is forwarded to a fully
connected layer. A softmax layer is used to predict the class and
bounding box from the ROI.

• Faster R-CNN (Ren et al., 2017) is a full CNN consisting of two
networks. The first network provides the region proposals and
the second one uses the proposed regions to detect and classify
the objects. The bounding boxes (BB) list, the label of each BB,
and the probability of each BB are obtained when an image is
processed. The images are always represented as height, width,
and depth, and they are known as tensors. The tensor (image) is
then passed through a convolutional model which, is pre-trained
until it reaches an intermediate layer and produces a feature
map. Afterward, it goes to Region Proposal Network. The Region
Proposal Network (RPN) uses the features to propose the regions
which may have some objects. Anchors are used by RPN to solve
the variable-length problem. They are boxes of fixed size placed
on the image having multiple rations and sizes and will be used
for predicting the location of objects. Once a candidate list of
objects with locations is obtained, objects are classified.

• YOLO (Redmon et al., 2016): The algorithm ‘‘only looks once’’ re-
quires the image or the video to pass through the neural network
exactly only once to make the predictions. A single CNN simulta-
neously predicts multiple bounding boxes and class probabilities
for those boxes. This basically means that it recognizes where the
object is, marking the position with a BB. Moreover, at the same
time, YOLO uses class probabilities to determine what the object
is. The next step to calculate the BB implements two key post-
processing steps: Intersect over Union (IoU), and Non-maximum
suppression (NMS).

All these techniques produce several BBs that contain the detected
nstances of any of the desired objects. Thus, further processing may be
pplied to obtain richer information based on those BBs in later stages.

.3. Smart weapon and people detection systems

Computer Vision algorithms require precise techniques to detect
ome specific features on the desired objects to be properly detected.
n the other hand, DL algorithms are suitable for the extraction and
etection of any object, as long as enough data is provided to the neural
etworks to learn those objects. However, it is possible to specify some
nhancements to the extraction procedure to reduce the processing time
nd to rise the accuracy with both approaches. Therefore, there are
ome efforts made on the detection of weapons that should be remarked
n. Most recent algorithms for handgun detection and knife detection
ould be divided into two categories (Warsi et al., 2020): Deep Learning
lgorithms and Computer Vision Algorithms.

• Olmos et al. (2018) implemented a DL algorithm for automatic
alarm when a handgun is detected. Extending this work, Castillo
et al. (2019) used CNN to automatically detect cold metallic
weapons in a surveillance video. However, these works are lim-
ited to gun-type weapons, and the datasets are trained using
cameras when people are frontal and well-focused, images are
clear, and obtained in a short distance, so, this is not a realistic

camera deployment for detecting threats.

3 
• Narejo et al. (2021) use YOLO v3 (Redmon et al., 2016), however,
they divide the processing flow in the same equipment into three
stages corresponding to the pre-processing of the images in which
the detection of objects is carried out, their analysis, and the
decision-making to send alerts of those cases when weapons are
detected.

• Ashraf et al. (2022) use YOLO-v5s to speed up all the processing
of detecting pistols by learning from 3.000 positive images and
12.000 negative ones. They are able to obtain large recall values
(99%), while reducing the processing time from 0.19 s per frame
using the Faster R-CNN, used as the baseline comparison, to 0.01
s per frame using their proposed mechanism based on YOLO-v5s.
However, the processing is centralized in a single quite powerful
computer (a 2.8 GHz Intel Core i7 processor MacBook Pro with
16 GB RAM and an Intel IRIS Pro GPU with 1536MB).

• Bhatti et al. (2021) carry out a weapon segmentation study using
images from CCTV surveillance cameras. They analyze the oper-
ation of different deep learning neural networks concluding that
YOLO is the one that yields the best results, being possible to work
with real-time restrictions.

• Nakib et al. (2018) presented a system for detecting guns, rifles,
and knives, as we do. They use Rectified Linear Unit (ReLU),
Convolutional Layer, Fully connected layer, and dropout function
of CNN to reach a result for the detection. They realize centralized
computation without data optimization.

In conclusion, most works published in reputable scientific journals and
conferences are dedicated only to gun detection, however, we detect
rifles, guns, and knives. To the best of our knowledge, they do not
include face detection and recognition after the arm detection, as we
do. Arm detection is usually realized in Cloud/Server, and sometimes
in Edge, without taking advantage of Fog possibilities, as stated in
the following recent surveys (Yadav et al., 2023; Santos et al., 2024;
Debnath and Bhowmik, 2021).

2.4. Centralized and decentralized network infrastructures

Current trends in the network infrastructures are the pathway
leaded by wireless global communications, such as 4G and 5G. The 5G
communications network is the fifth generation of wireless broadband
technology. 5G enables ubiquitous communication transparent to the
user. It promises significant improvements over current 4G/LTE stan-
dards: Extremely high data transfer rates of up to 10 Gbps; Very low
latency; High robustness; Very low power consumption; and, Signifi-
cant processing of more network subscribers. 5G wireless technologies
will increase bandwidth, improve QoS, provide better usability and
security, reduce delays, and lower the total cost of service. These 5G
technologies are expected to not only provide higher throughput and
lower latency but also higher connectivity density and mobility range
without compromising reliability. However, in order to achieve all
these improvements, 5G requires efficient usage of both communica-
tions technologies and processing resources. The key for this is to focus
on intelligent services that provide very fast responses to the users
whilst keeping the network usage as low as possible.

Therefore, to improve the mobile communication technology, 5G
enhances its capabilities by three main properties: enhanced Mobile
BroadBand (eMBB), massive Machine Type Communication (mMTC),
and Ultra-Reliable Low-Latency Communication (URLLC). The main
concept of eMBB is to extend frequency resources to a millimeter wave
(mmWave) above 6 GHz, while mMTC is defined as the network capac-
ity to simultaneously host millions of devices in an area of 1 km. Lastly,
URLLC is the feature that guarantees end-to-end maximum latency of
10 ms. Currently, Cloud Computing is the most used paradigm for
network-based processing. The most common architecture to support
it is the Centralized Cloud Computing (CCC) (Anitha et al., 2024; Lee
et al., 2020). In the CCC architecture, the application server is located
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Fig. 1. Centralized Cloud Computing (CCC) and Multi-access Edge Computing (MEC)
architectures (Lee et al., 2020).

in the central cloud, causing a delay if the physical distance between
the central cloud and the user is high. Thus, the CCC architecture causes
the latency to grow large. Moreover, the network is largely used, which
may lead to network congestion.

On the other hand, to address the challenges in reducing core
network latency, a new network architecture called Multiple access
Edge Computing (MEC) has been developed (ETSI Industry Specifi-
cation Group, 2019). The main functionality of MEC technology is
to reduce the physical distance between the user and the application
server (Mahbub and Shubair, 2023). For this, the network functions are
virtualized in the cloud, in which the application servers are defined,
and through the MEC architecture the computing resources which are
closest to the user are assigned. MEC architecture allows you to reduce
transmission delay by placing the application server and compute
resources close to the destination. In short, it allows users to overcome
the limitations of mobile terminals and reduce energy consumption
while reducing the workload of the cloud. Fig. 1 shows the current 4G
architecture (CCC) and the new MEC architecture, as proposed by 5G
to achieve URLLC.

3. Methodology

We propose to apply a distributed processing system based on Deep
Learning for the detection, classification, and identification of armed
persons. This will mitigate the data load that will reach the equipment
located at the cloud computing level. As shown in Fig. 2, the processing
will be distributed allowing to take advantage of the characteristics of
the different devices using the Fog Computing approach.

The information will be captured and pre-processed in the Edge
ayer. Later, the processing will be executed at various levels in the Fog
ayer. Finally, if it is necessary to identify a person, only the previously
rocessed information will be sent to the Cloud layer. A general scheme
an be seen in Fig. 3. The following sections will detail the algorithms
mplemented in each layer.

.1. Edge layer

This layer is responsible for capturing the images from the camera
ensors. These nodes are equipped with microcontrollers that allow the
ollowing tasks to be carried out in consecutive order, as shown in the
eft part of the diagram of Fig. 4:

• Capture images from camera sensors.
4 
Fig. 2. Network layers.

• Apply Background Subtraction (BS). BS is a common and widely
used technique for generating a foreground mask (FM). The FM is
a binary image containing the pixels belonging to moving objects
in the scene. BS calculates the FM performing a subtraction
between the current frame and a background model, containing
the static part of the scene or, in general, everything that can
be considered as background given the characteristics of the
observed scene.

• If the changes in the image exceed a certain threshold, the image
is sent for processing to the Fog layer, otherwise, it is discarded.

• Finally, the background is updated to adapt to possible changes
in the scene.

The pre-processing at the edge layer will only send the relevant
information, thus reducing the computational load due to computing
unnecessary frames.

3.2. Fog layer

In the Fog layer, the detection of people and weapons is carried out.
Besides, in case of a positive detection, the assignment of the weapon to
the closest person is carried out, and the face of the assigned person is
extracted. Tasks in the Fog layer are performed on two levels, as shown
in Fig. 3.

In the first level, the images from the Edge layer are received and
the following tasks are carried out:

• Detect people and obtain the region of interest (ROI) that includes
each one.

• Detect weapons and obtain the ROI that includes each one. The
weights for training the NN have been generated using our own
database, composed of 15,600 images.

• Send only the Bounding Box (BB) region of each armed person to
the second level of the Fog layer.

In this first level, the information to be processed is reduced with
respect to the original, since the image is partitioned to analyze only
the parts of interest. To perform an efficient segmentation of the image
bodies in devices that do not have a computing capacity as high
as those found in the cloud, the use of the YOLOv5 (Jocher, 2021)
deep learning neural network is proposed. Pre-trained weights used for
people detection are the YOLOv5l6 set.

YOLOv5l6 offers high performance as well as fast computation in

high-power GPUs. We propose the application of YOLOv5s because is
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Fig. 3. Block diagram of the processing methodology.
Fig. 4. Execution flow for Edge and Fog nodes.
designed for low-resource devices in the Fog layer, instead YOLOv5l6,
or upper, which requires larger memory sizes and thus, it penalizes the
overall performance.

In the second level of the Fog layer, the processing nodes are
focused on obtaining the face of the subject detected with weapons. For
this substage, the weights of the NN have been generated by training
the neural network using YOLOv5s6. The tasks that these nodes must
perform are:

• Receive the BB with the bodies of the armed people from the first
level of the Fog layer.

• Use the neural network to segment the faces of interest.
• Send the face of the detected person to the Cloud layer for

identification. In those cases where there is no person with a
weapon, no information is sent.

3.3. Cloud layer

This final layer is exclusively responsible for the identification of
people. The computation is based on the face-recognition library (Geit-
gey, 2020) written in Python. In it, the face is matched with a database
to identify the person and, thus, to determine if that person is allowed
to carry a weapon or not. For instance, a police person is allowed to
carry a gun. Therefore, a gun would be detected. Afterward, the person
who carries that gun is detected. A suspicious event is sent to the Cloud
Layer, in which the person is identified as an authorized person and
5 
finally, no alarm would be raised. On the other hand, if the detected
person is not identified as an authorized one, the alarm is activated.

3.4. Consumption analysis

For the evaluation of energy consumption, an evaluation model will
be built based on measurements of computing time and power con-
sumed by the devices in typical scenarios. The following methodology
is applied to both the SmartFog proposal, which uses a distributed
pipeline of devices, and to a centralized solution where the entire
process runs on a Jetson Nano with 4 GB of RAM, for the purpose of
comparison.

We used 5 videos, all of them contains between 1300 and 2000
frames. They represent these scenarios:

1. No people
2. One person without a weapon.
3. Two persons without weapons.
4. One person with a weapon.
5. Two persons with weapons.

We measure the number of processed frames and the time interval
that its execution lasts for every stage in the pipeline of the processing:

1. Background analysis.
2. People and weapon detection.
3. Face detection.
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Fig. 5. Diagram of power consumption of the devices.

To measure power consumption, each device’s official Power Adap-
tor is connected to an Agilent 34405A Digital Multimeter to monitor the
current flowing through the cable supplying power to each device. The
multimeter is connected to a central computer to gather the recorded
data. This device has very low input resistance (0.01 Ω at 12 V), so
it does not significantly affect the current in the power cable. The
multimeter can detect current with a maximum resolution of 0.001 mA
at 20 Hz. It also has a USB port for exporting the data using a high-
speed connection through the VISA protocol. The VISA specifications,
previously maintained by the VXI plug & play Systems Alliance, are
now managed by the IVI Foundation. The central computer runs a
Python program to receive and save the data from each multimeter.
The measurement diagram is shown in Fig. 5.

The data is used to create a graph showing instantaneous power
over time. The time axis of the graph is divided into segments based on
different scenarios in the scene. The values are averaged using a sliding
window to determine the average power for each scenario and device.
The energy costs associated with various activities, such as network
transmissions, memory accesses for video processing, and similar tasks,
are factored into the average power for each scenario.

Using data from processing time and device consumption, we build
an analytical model based on frame count to evaluate SmartFog against
the alternative centralized solution. Results of the measurements and
the final model obtained are described in Section 4.

4. Experimentation

To validate the system, a demonstrator has been deployed with the
structure shown in Fig. 2.

• Edge layer: Composed by camera sensors and Raspberry Pi 3
(RPi3) devices.

• Fog layer: Composed by NVIDIA Jetson Nano devices.
• Cloud layer: Composed by an Intel i7–8700 server equipped with

a NVIDIA GeForce RTX 2070 GPU.

All the internal hardware, operating system, and software compo-
nents of both the Edge and Fog layer nodes are depicted in Fig. 6.

The system architecture is described in Fig. 7. Every Fog device of
the first level can attend multiple sensor cameras from Edge, and every
Fog device of the second level can attend multiple Fog devices from the
first level.

This architecture permits low-cost camera devices connected dy-
namically with GPU resources in the Fog layer. So, the number of GPUs
is drastically reduced, favoring the scalability of the network.

The detection and segmentation of people and weapons in the first
Fog layer was carried out using Jetson Nano. Timing results were: Pre-
processing 0.01 s + Inference 0.43s . To validate the system, different
tests have been carried out considering different people with and
without weapons in a scene.
6 
4.1. Experimental cases

In order to test the system in real environments, five different
schemes have been designed:

4.1.1. Case 1: No person (Background)
Real environments, either indoor or outdoor, affected by changing

light conditions without any person are used in this case study. The
illumination does not change abruptly, but as in real life, with casted
shadows and direct sunlight depending on the scene. The RPi3 edge
node is used to detect changes in the background, so, it is expected
that no (or little) communication is established with Fog-level devices.

4.1.2. Case 2: One person - no weapons (Body)
Scenes are composed of a single person walking or standing with

some illumination variations as in the previous case study. The person
on the scene is not carrying or holding any weapon. The case study
is expected to make use of the Edge level and the first stage of the
Fog level, for person detection. As no weapon is detected no further
communication is expected to arise.

4.1.3. Case 3: One person - one weapon (Body + Weapon)
Videos containing a single person standing or walking around and

holding a gun are used. These videos have been shot either indoors or
outdoors, with non-uniform illumination. The detection of a weapon
will provoke a communication transfer for person identification at the
Cloud level.

4.1.4. Case 4: Several persons - no weapons (NBodies)
This study case is an evolution of Case 2, with several persons. They

are standing or walking around without any weapons. Scenes have been
recorded both indoors and outdoors with varying illumination. As there
is no weapon, no communication to Cloud is expected to appear.

4.1.5. Case 5: Several persons - several weapons (NBodies + NWeapons)
The final and most demanding test case is when several persons

are in the frame holding guns. Some of the persons may be holding
several guns at the same time and other persons may be holding none.
Moreover, the persons are not holding the weapons all the time during
the whole scene length. In this case, the identification process of each
person holding a weapon sends messages to the Cloud level, so a higher
number of communications will be expected.

4.2. Visual results

First, we will show the effectiveness of the proposal by providing
some visual results. These results reveal that the persons and guns are
detected in a proper way. In Figs. 8 and 9, two outdoor and indoor
images, respectively, from ‘‘Case 5’’ scenario, of the same infrastructure
are shown. It is to be remarked that the surveillance cameras are taken
from a high angle, and at a large distance from the gunmen (further
than 5 m.) Despite that, the guns and the associated persons handling
them are correctly detected.

We detect also rifles as it is shown in Figs. 10 and 11, and knives
in Figs. 12 and 13. These outdoor images are chosen because Fig. 10
present several armed military units in a real situation, and the picture
does not present the arms at the front of the scene. Since the red and
orange bounding boxes overlap, the rifle of the red man is assigned to
the orange one, these situations are the actual limit and challenge of
computer vision systems based on deep learning. Fig. 11 presents real
military training, detected correctly. and finally, Figs. 12 and 13 show
some terrorists one of them with a knife.

Each detected element (person, pistol) is remarked by a colored box
with the title of the detected element and the confidence. For instance,
in Fig. 8 the gunman is detected as a person with a 0.83 confidence,
whilst the pistol is detected with a 0.59 confidence. Moreover, there
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Fig. 6. Components of the Edge and Fog nodes.
Fig. 7. Deployed system data flow.
is a link between the pistol and the person who handles it. It must
be mentioned that the identification of the persons could not be per-
formed because of the use of facemasks that occluded mostly the faces.
Therefore, each different person was identified as personN for further
tracking purposes. Although, this behavior is beyond the scope of this
work. Thus, the BBs in orange or pink shown in Figs. 8 and 9 are the
result of the distributed processing of:

• (Edge level) detecting a substantial change in a captured frame
from the previous one.

• (Fog level, 1st Fog sublayer) detecting a person, producing a BB
for each detected person, cropping the image to the BB. In this
stage, in parallel with the detection of the person, the detection
7 
of weapons is carried out. If a weapon is detected, the BB is sent
to the next stage of the Fog level.

• (Fog level, 2nd Fog sublayer), detecting the face of the person
within the received BB, cropping the face and the weapon in two
different sub-images, linking each weapon BB to its associated
person BB.

• (Cloud level) Identification of each detected person, based on the
face sub-image sent from the previous level.

4.3. Processing time and network use

As this system is a distributed one, the amount of time taken to
process completely a frame involves not only the processing time but
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Fig. 8. A frame of an outdoor scene of a gunman aiming at a driver inside a car.

Fig. 9. A frame of an indoor scene of two gunmen in a corridor.

Fig. 10. Outdoor situation involving several military forces with rifles.

also the time expended at the communications between the nodes.
In fact, this last type of timing is complex to estimate as it depends
on the network status at different moments. If the network is too
saturated, there would be a lot of packets trying to access the net-
working medium so there might be network congestion or some packet
collisions. In any case, both problems would make communication slow
down significantly, but not in a uniform way.

We have tested the proposed network pipeline as described in Sec-
tion 3 and collected the amount of data used as inputs at every stage of
the distributed system. In order to replicate the same input conditions,
the camera at the RPi3 (Edge level node) has been substituted by files
that contain each case scenario, and a framebuffer to keep every frame
of the video to process it in the same way as if it is coming from the
camera.

Table 1 shows the average time spent in each stage of the pipeline
for each scenario case. It can be determined that the average time in
every stage is similar in each case, or in another case is 0 (as that stage
8 
Fig. 11. Military assault using a rifle.

Fig. 12. A masked person holding a knife.

is not activated). Thus, there is a reduction of the overall time in all
those cases where the stream can be discarded earlier. Moreover, the
1st and 2nd Fog sublayers, which represent the 2nd and 3rd stages of
the pipeline, establish the throughput of the whole pipeline. That is,
the computing carried out by the Jetson devices (the ones in the Fog
level) limits the speed at which every frame can be processed, with an
end-to-end throughput of 3.6 results per second achieved in all case
scenarios except in Case 1, where the throughput achieves 23.3 results
per second.

This system aims to reduce the communications from Edge (RPi3
nodes with cameras) to Cloud. Table 2 presents the data amount
processed by each device. Results from Table 2 show clearly that this
hypothesis stands true. For instance, in Case 1, where there are no
persons in the scenario, the RPi3 node, set as 1st stage of the networked
pipeline of the distributed stream processing engine, sends no data to
the following stages. Thus, the network is completely unused. Table 3
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Table 1
Average computing time per pipeline node (seconds/frame).

Scenarios 1st stage 2nd stage 3rd stage 4th stage
Raspberry Pi Jetson 4 GB Jetson 2 GB Cloud

Case 1: Background 0.0430 0.0000 0.0000 0.0000
Case 2: Body 0.0431 0.2822 0.2415 0.1460
Case 3: Body + Weapon 0.0433 0.2854 0.2379 0.1639
Case 4: NBodies 0.0438 0.2822 0.2390 0.0000
Case 5: NBodies + NWeapons 0.0442 0.2870 0.2437 0.1500
Table 2
Pipeline data processing (MB).

Scenarios 1st stage 2nd stage 3rd stage 4th stage
Raspberry Pi Jetson 4 GB Jetson 2 GB Cloud

Case 1: Background 8329.37 0.00 0.00 0.00
Case 2: Body 10 577.83 765.31 0.72 0.02
Case 3: Body + Weapon 10 554.10 1702.66 81.08 2.62
Case 4: NBodies 10 565.96 2568.82 0.65 0.00
Case 5: NBodies + NWeapons 8014.94 1370.43 46.66 1.29
Fig. 13. Some persons, one of which has a knife.

Table 3
Pipeline data transactions (%).

Scenarios 1st → 2nd 2nd → 3rd 3rd → 4th
Stage Stage Stage

Case 1: Background 0.00 0.00 0.00
Case 2: Body 7.23 0.01 0.00
Case 3: Body + Weapon 16.13 0.77 0.02
Case 4: NBodies 24.31 0.01 0.00
Case 5: NBodies + NWeapons 17.10 0.58 0.02

shows the percentage of data sent from one stage to the following one
in each case.

Results from Table 3, along with those from Table 2, help to
understand the reduction of the communications between nodes. Cases
3 and 5 show a decrease in the transactions by means of the proper
division of the work. For instance, in Case 3, RPi3 processes 10554.1
MB, but only 16.13% of that data is sent to the 2nd stage of the pipeline
(1st Fog sublayer node). Therefore, only 16.13% of the frames show
relevant changes to be further processed by the following stages of the
pipeline. After that, only 0.77% of the data processed by the Nvidia
Jetson 4 GB (which is the 1st Fog sublayer node) set as the 2nd stage
of the pipeline is forwarded to the 3rd stage of the pipeline (composed
by the 2nd Fog sublayer nodes). This lowering comes from the detection
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of a body and a weapon, which appear in much fewer frames than the
initial stream. Finally, only 0.02% of the frames that contains a body
and a weapon are sent to Cloud, for identification. In this final step,
the reduction comes from both fewer frames and smaller data (only
the face of the person holding the weapon is sent).

4.4. Power consumption

As described in Section 3.4, both the SmartFog distributed system
and a centralized solution using a 4 GB RAM Jetson Nano device are
analyzed in terms of power consumption.

Using the described logging environment (Fig. 5), several executions
of the videos from each Case scenario have been carried out. In the
following paragraphs, a specific video from the Case 5 scenario is
described in terms of power consumption aligned with the actions of
the characters inside the scene.

Fig. 14 shows one frame from a Case 5 scenario video joined to
a power consumption plot of each of the involved nodes. The blue
line represents the RPi3 node consumption, which is around 3 W on
average. It does not change drastically its behavior over time. The
second stage node (Jetson Nano 4G) is plotted in green. It can be clearly
observed that there are two different states: from the start to around 60
s. and from 60 s. on. The first state is almost stationary around 3.8 W,
indicating that there is no processing in the node. This happens during
the first 59 s, no changes are in the frame, so the RPi3 node does not
send any data to 2nd stage node in the pipeline (the Jetson Nano 4 GB,
which is the 1st Fog sublayer node) to detect persons and weapons.
After 60 s instant, the power consumption of Jetson Nano 4 GB rises up
(ranging from 3.9 W to 9.1 W) with an average of 5.6 W. This behavior
occurs because the node looks for persons and weapons.

In the video, the woman takes a gun out in the 90-second moment,
which is translated into a peak of the power consumption of the Jetson
Nano 2 GB node, plotted in orange. Most of the time, the orange plot
is in the range from 0.8 W to 2.5 W (average, 1.2 W), as nothing
is computed in that 3rd stage pipeline node (which is the 2nd Fog
sublayer). However, at 90 s instant, the power consumption takes a
peak of 4.4 W, as the face is searched for in the subframe sent by the
2nd stage node of the pipeline when the weapon is detected.

Moreover, Fig. 15 shows the power consumption analysis for a Case
3 scene, where only one person with a weapon appears on the scene
at certain times. On this occasion, the chart has been divided into
several intervals to highlight different consumption regimes depending
on whether a person and/or weapon is detected. The total consumption
signal has been smoothed to facilitate its interpretation. There is an
appreciable difference between detection levels: (1) undetected body,
interval a (∼7.5 W); (2) detected unarmed body, intervals b, d, f, and h
(∼8.7 W); and (3) detected armed body, intervals c, e, and g (∼9.2 W).
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Fig. 14. Power consumption of the networked pipeline nodes for a Case 5 scene.

Fig. 15. Power consumption of the networked pipeline nodes for a Case 3.

This experiment shows the power consumption behavior of the
nodes of the infrastructure of the distributed stream processing net-
worked pipeline. It demonstrates that the high-performance computing
(HPC) required for the most demanding tasks (body, weapon, and
face detection) is fired only in specific instants, allowing for contin-
uous tracking but keeping the power consumption of the system in a
controlled state.

In order to build the analytical consumption model, the power
consumption of each deployment is shown in Table 4. In that, 𝑃 stands
for Power Consumption (in Watts, W), 𝑒𝑝𝑓 is energy per frame (in
Joules, J), and 𝑡𝑝𝑓 is time per frame (in seconds, s).

With the empirical results provided in Table 4, we deduced a power
consumption model for each deployment.

The SmartFog deployment is composed of three devices: Edge (𝑒),
Fog Level 1 (𝑓1), and Fog Level 2 (𝑓2). Edge level device was a
Raspberry Pi 3, Fog Level 1 device was a Jetson Nano 4 GB, and Fog
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Level 2 was a Jetson Nano 2 GB. On the other hand, Edge Computing
deployment consisted in only one device (𝐸) capable of carrying out all
the procedures. In this case, a Jetson Nano 4 GB was used as the Edge
Computing device.

Three scenarios have been considered within any scene: the part
of the scene in which the camera only captures ‘‘background without
people’’ (noted as 𝑏), the part of the scene in which there are ‘‘people
without weapons’’ (indicated as 𝑝), and finally, the section of the scene
in which ‘‘people with weapons’’ are present (noted as 𝑤). According
to this description, we could determine the following values:

• 𝑛𝑏: Number of frames of 𝑏 (‘‘background without people’’).
• 𝑛𝑝: Number of frames of 𝑝 (‘‘people without weapons’’)
• 𝑛𝑤: Number of frames of 𝑤 (‘‘people with weapons’’)

Combining all the above, we can provide values for each part
in a compact way. For instance, 𝑒𝑝𝑓𝑒,𝑝 corresponds to energy per
frame (𝑒𝑝𝑓 ) in a Raspberry Pi 3 device in Edge level (𝑒) in a ‘‘people
without weapons’’ scenario (𝑝). The experiments showed that energy
consumption to be 0.389 J.

4.4.1. Energy model for the SmartFog deployment
The SmartFog deployment power consumption model considering

the number of cameras (𝐶) is described in Eq. (1).

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑚𝑎𝑟𝑡𝐹𝑜𝑔 =

𝑛𝑏 ⋅
(

𝐶 ⋅ 𝑒𝑝𝑓𝑒,𝑏 + 𝑡𝑝𝑓𝑒,𝑏 ⋅ 𝑃𝑓1,𝑏 + 𝑡𝑝𝑓𝑒,𝑏 ⋅ 𝑃𝑓2,𝑏
)

+

𝑛𝑝 ⋅
(

𝐶 ⋅
(

𝑒𝑝𝑓𝑒,𝑝 + ⋅𝑒𝑝𝑓𝑓1,𝑝
)

+ 𝑡𝑝𝑓𝑒,𝑝 ⋅ 𝑃𝑓2,𝑝
)

+

𝑛𝑤 ⋅ 𝐶 ⋅
(

𝑒𝑝𝑓𝑒,𝑤 + 𝑒𝑝𝑓𝑓2,𝑤 + 𝑒𝑝𝑓𝑓2,𝑤
)

(1)

4.5. Energy model for the Edge Computing deployment

The mathematical model is much simpler than the SmartFog energy
model, as there is only one device per camera. The Edge Computing
device (𝐸) energy consumption model is described in Eq. (2).

𝐸𝑛𝑒𝑟𝑔𝑦𝐸 = 𝐶 ⋅
(

𝑛𝑏 ⋅ 𝑒𝑝𝑓𝑏 + 𝑛𝑝 ⋅ 𝑒𝑝𝑓𝑝 + 𝑛𝑤 ⋅ 𝑒𝑝𝑓𝑤
)

(2)

4.5.1. Comparative results
We selected several scenarios for comparing the results from the

energy models of the SmartFog and Edge Computing deployments. In
the following, we present each scenario:

1. Scenario 1: Scene in a low-traffic place.

(a) Frames without people: 900.
(b) Frames with unarmed people: 100.
(c) Frames with armed people: 0.
(d) Number of cameras: 1, 4.

2. Scenario 2: Scene in a busy and safe place.

(a) Frames without people: 400.
(b) Frames with unarmed people: 600.
(c) Frames with armed people: 0.
(d) Number of cameras: 1, 4.

3. Scenario 3: Scene in a busy place with an armed person incident.

(a) Frames without people: 200.
(b) Frames with unarmed people: 700.
(c) Frames with armed people: 100.
(d) Number of cameras: 1, 4.

After the execution of this scenarios, the energy consumption of
the model are stated in Table 5. The Edge Computing version has
better energy consumption behavior in scenarios with low–traffic (very
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Table 4
SmartFog vs Edge Computing power consumption.

SmartFog deployed system

Background Unarmed people Armed people

𝑃 (W) 𝑡𝑝𝑓 (s) 𝑒𝑝𝑓 (J) 𝑃 (W) 𝑡𝑝𝑓 (s) 𝑒𝑝𝑓 (J) 𝑃 (W) 𝑡𝑝𝑓 (s) 𝑒𝑝𝑓 (J)

Raspberry Pi (Edge level) 3 0.096 0.29 3 0.13 0.389 3 0.131 0.393
Jetson 4 GB (Fog level 1) 3.7 – – 4.75 0.28 1.349 4.75 0.286 1.359
Jetson 2 GB (Fog level 2) 1.4 – – 1.4 – – 1.6 0.228 0.365

Edge Computing deployed system

𝑃 (W) 𝑡𝑝𝑓 (s) 𝑒𝑝𝑓 (J) 𝑃 (W) 𝑡𝑝𝑓 (s) 𝑒𝑝𝑓 (J) 𝑃 (W) 𝑡𝑝𝑓 (s) 𝑒𝑝𝑓 (J)

Jetson 4 GB (Edge Computing) 4.9 0.043 0.21 7.65 0.29 2.234 7.8 0.482 3.76
Table 5
Comparison of the global energy consumption of the Edge Computing version vs the
SmartFog version.

Scenario Cameras Edge SmartFog

1 1 0.41 kJ 0.89 kJ
4 1.66 kJ 2.19 kJ

2 1 1.43 kJ 1.46 kJ
4 5.70 kJ 4.94 kJ

3 1 1.98 kJ 1.71 kJ
4 7.93 kJ 6.17 kJ

few persons). Besides, in scenarios with multiples cameras, SmartFog
outperforms the Edge Computing version.

We decided to detect where the time was spent in each case.
Therefore, we plotted chord diagrams, connecting the time spent by
each stage in each level (Edge/Fog Level 2/Fog Level 2) with each
scenario. In the Edge Computing case, as there is only one device, the
chord diagrams represent the percentage of time spent in each stage.

Fig. 16 shows the comparison between the Edge Computing and
SmartFog in all the scenarios with 4 cameras. The Edge Computing
behaves better than SmartFog only in the Scenario 1. Although, 90% of
the frames of the scene are background without any person, and only
10% of the frames are with unarmed people, Edge Computing almost
take 50% of the processing time in the detection of the unarmed people
process. However, due to the efficiency of the Jetson Nano 4 GB device,
the power consumption is reduced. On the other hand, as the Raspberry
Pi 3 is not an efficient device, the Edge level (the camera acquisition,
the background subtraction, and change detection threshold) at the
SmartFog model consumes greater than the Edge Computing version.
Besides, although there are no armed people frames in the scenario,
there is still a power consumption at the Fog Level 2 (3rd stage). We
call that basal power consumption.

Scenario 2, in which there are many more frames with persons, the
second stage gets much more processing time. In this case, SmarFog
outperforms the Edge Computing. In this case, the Jetson Nano 4 GB
device in the Edge Computing is very powerful but it is not as power
consumption efficient as the SmartFog distribution model, as only 1
Jetson Nano 4 GB of the 2nd stage of the Fog Level 1 device of the
SmartFog consumes is required for several cameras. Therefore, in this
case, the distributed structure of SmartFog makes the best of it.

The most exigent scenario, Scenario 3, provides best results for the
SmartFog model. The distributed infrastructure of SmartFog along with
its intelligent decision-making intrinsic behavior is able to reduce the
power consumption of further stages when they are not needed. This
enhances the efficiency of the proposal in terms of power consumption
of the SmartFog.

5. Discussion

Regarding the Visual Results, the system correctly detects people.
The test was conducted manually, checking whether the detection was

accurate. In some frames, the person goes undetected due to occlusions
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or unusual body positions that cause detection errors. However, as soon
as the person moves, they are detected again.

People holding guns are well detected in Scenario Cases 3 and 5.
Again, when appears occlusions or other factors, weapons may also go
undetected punctually. However, the weapons are detected again once
the occlusion clears. There are some frames where a false weapon is
detected. In Cases 2 and 4, shown in Table 3, the false positives are
only 0.01% of the total data sent from the first stage of the pipeline.
These misdetections occur due to the similarity of objects to guns, rifles,
or knives. Nonetheless, these errors last only a few frames. Finally, in
the identification phase at the Cloud level, a small part of the image
containing the face of the person holding the weapon is sent. The
detected faces have been correctly identified in all cases.

Regarding network computation, this distributed scheme combines
the best aspects of both CCC and MEC architectures, minimizing their
negative effects. The processing is efficiently distributed among the net-
work nodes. The Edge node discards frames without activity. The first
Fog level node detects people, whether armed or not. Consequently,
the second Fog level node receives only the bounding boxes of armed
individuals. Finally, the ROI of this face is sent to the Cloud server
for identification. This approach significantly reduces the amount of
exchanged data. For example, in Case 3, Table 2 shows a reduction
from 10554.10 MB (approximately 10.31 GB) to just 2.62 MB. This
represents a reduction of 99.99975% in the data sent to the Server.

The results in Tables 2 and 3 show that network congestion, a major
limitation of the CCC architecture, is effectively overcome.

Tests in Section 4.4 demonstrate that the power consumption of
the proposed Fog Computing approach is much lower than that of
a typical Edge-level (MEC) server, which usually consumes tens of
watts per hour. As shown in Fig. 14, the peak power consumption
of each node adds up to 3.5 mW + 5.5 mW + 9.2 mW = 18 mW.
These values represent peak consumption, meaning real consumption
is lower. Fig. 15 confirms this pattern: frames with a person holding a
weapon show higher power consumption, but overall, it ranges between
7 and 10 mW.

In conclusion, this proposal outperforms the MEC architecture re-
garding power consumption and reduces the costs of deploying numer-
ous servers.

6. Conclusions

We have presented a new surveillance system for detecting people
and weapons, optimized for Fog Computing. This approach is suitable
for inclusion in 5G deployments. It efficiently utilizes the Edge and
Fog layers, with several Deep Learning algorithms implemented in
embedded GPUs in the Fog layer. The system is trained to detect guns,
rifles, and knives.

As a result, a large amount of data and communications are saved—
only about 2% of the original information with weapons in the scene is
sent to the Cloud layer, and no data is sent if no weapons are detected.

The system is useful not only with cameras in which the weapons
and people stay still in a first plane but also in typical security cameras
in which people are far and down the cameras, as is shown in the scenes
presented in this article.
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Fig. 16. Scenarios with 4 cameras.

Most scientific works are dedicated only to gun detection, however,
we include rifles, guns, and knives. Usually, without including face
detection and recognition after the weapon detection, as we do.

Weapon detection is usually carried out in Cloud/Server, and some-
times in Edge, without taking advantage of Fog possibilities. Central-
ized systems require complete data transmission, suffering scalability
problems. Edge systems require embedded expensive GPUs.

The SmartFog distributed and intelligent network processing in-
frastructure reduces the power consumption of the overall system,
maintaining large accuracy, concerning the Edge Computing version. It
12 
Fig. 17. Live demonstration in FEINDEF.

is much more flexible and adaptable to increase the amount of cameras.
The actual bottleneck is the edge level camera device selected in this
proposal, the Raspberry Pi 3, which has a considerable energy con-
sumption in basal mode. However, despite that, the SmartFog proposal
shows lower overall power consumption in highly demanding scenarios
with persons and weapons.

The main benefit of our proposal is the data reduction and the
flexible and dynamic computation network infrastructure. So, Edge
devices include simple and cheap processors just to decide if a change
in the scene succeeds. Fog-embedded GPUs can attend several Edge
cameras, reducing the system cost, the data transmission, and favor-
ing the scalability of the system. Computer vision (CV) and artificial
intelligence (AI) have significantly augmented the impact of Edge and
Fog computing by enabling intelligent processing of visual data closer
to the source (Tuli et al., 2023). It is not necessary to transmit large
amounts of raw data to centralized servers. By combining CV and AI
with Edge and Fog computing it is possible to achieve faster response
times, reduce bandwidth usage, enhance privacy and security, and
unlock new applications and services.

Finally, we presented a demonstrator of our system working for
three consecutive days at FEINDEF 2023, the ‘‘International Defense
Fair of Spain’’ (Feindef, 2023). Fig. 17 shows how it operates in a real
scenario with many people. Note that the person on the left is the only
one with a gun, thus, this person is detected as armed, and his BB is
orange, whilst the rest of the BBs people are red.

7. Future works

This paper shows the possibilities of implementing Fog computing
in low-resource camera sensor deployments. In fact, we are planning to
substitute the Edge level device, the Raspberry Pi 3, with a much lower
power consumption device such as ESP32–CAM, with only 0.5 W. In the
future, we aim to evaluate a scenario with hundreds of camera sensors
and a wide level of fog nodes. Also, we pretend to introduce security
mechanisms for low-resource devices, in particular, we will integrate
the mechanisms described in Alcaraz Velasco et al. (2021, 2024).
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