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a b s t r a c t 

Background and Objective: B-spline interpolation (BSI) is a popular technique in the context of medical 

imaging due to its adaptability and robustness in 3D object modeling. A field that utilizes BSI is Image 

Guided Surgery (IGS). IGS provides navigation using medical images, which can be segmented and recon- 

structed into 3D models, often through BSI. Image registration tasks also use BSI to transform medical 

imaging data collected before the surgery and intra-operative data collected during the surgery into a 

common coordinate space. However, such IGS tasks are computationally demanding, especially when ap- 

plied to 3D medical images, due to the complexity and amount of data involved. Therefore, optimization 

of IGS algorithms is greatly desirable, for example, to perform image registration tasks intra-operatively 

and to enable real-time applications. A traditional CPU does not have sufficient computing power to 

achieve these goals and, thus, it is preferable to rely on GPUs. In this paper, we introduce a novel GPU im- 

plementation of BSI to accelerate the calculation of the deformation field in non-rigid image registration 

algorithms. 

Methods: Our BSI implementation on GPUs minimizes the data that needs to be moved between mem- 

ory and processing cores during loading of the input grid, and leverages the large on-chip GPU register 

file for reuse of input values. Moreover, we re-formulate our method as trilinear interpolations to reduce 

computational complexity and increase accuracy. To provide pre-clinical validation of our method and 

demonstrate its benefits in medical applications, we integrate our improved BSI into a registration work- 

flow for compensation of liver deformation (caused by pneumoperitoneum, i.e., inflation of the abdomen) 

and evaluate its performance. 

Results: Our approach improves the performance of BSI by an average of 6.5 × and interpolation accu- 

racy by 2 × compared to three state-of-the-art GPU implementations. Through pre-clinical validation, we 

demonstrate that our optimized interpolation accelerates a non-rigid image registration algorithm, which 

is based on the Free Form Deformation (FFD) method, by up to 34%. 

Conclusion: Our study shows that we can achieve significant performance and accuracy gains with our 

novel parallelization scheme that makes effective use of the GPU resources. We show that our method 

improves the performance of real medical imaging registration applications used in practice today. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Image Guided Surgery (IGS) aims to provide surgeons with nav-

gation capabilities to perform safer surgeries through better visu-
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lization [1] . IGS is created by combining medical images, such as

omputed Tomography (CT) or Magnetic Resonance Imaging (MRI)

2] , with surgical instrument tracking technologies [3] . However,

he accuracy of image guided surgery is often undermined by or-

an deformations, especially in soft tissue surgeries. These defor-

ations are difficult to account for due to their non-linear be-

aviour. Non-rigid registration is a technique that has been devel-

ped to reproduce and model such non-linear deformations [4] . 
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Non-rigid registration through Free Form Deformation (FFD) [5] ,

based on cubic B-spline interpolation (BSI) [5,6] , is a state-of-the-

art technique for non-rigid registration. FFD works by manipulat-

ing a grid of control points. The shape of a 3D object (e.g., an

organ) underlying the control points can be changed by using a

smooth and C 2 continuous transform (i.e., continuous up to second

order derivatives). FFD uses BSI in the calculation of the deforma-

tion field. 

BSI is one of the most computationally demanding parts of FFD

[7] . Graphics Processing Units (GPUs) can help achieve the real-

time requirements of IGS, namely FFD, as they offer massive com-

putational performance in comparison to Central Processing Units

(CPUs). GPUs deploy thousands of execution threads, which oper-

ate on large batches of data. GPUs provide higher throughput and

power-efficiency than CPUs on multithreaded workloads [8] . The

performance of medical imaging applications benefits significantly

from GPUs [9–15 , 45] . 

For these reasons, several authors have used GPUs for BSI [6,16–

19] . Sigg et al. [16] and Ruijters et al. [17] achieve a substantial

reduction in the number of input samples by representing the

weighted sums as trilinear interpolations. More recently, Elling-

wood et al. [6] and Du et al. [18] use GPU implementations of BSI

to improve the performance of image registration. They improve

input sample loading by aligning the control grid with the voxel

grid of the volume [6,18,19] . However, all these works suffer from

the intensive data movement of a large number of input samples

between the memory and the GPU, which is the main performance

bottleneck of BSI implementations on a GPU [16] . 

Our goal in this work is to accelerate BSI on GPUs by allevi-

ating the data movement bottleneck with optimization techniques

that enable a more efficient use of the on-chip memory resources.

To this end, we propose a GPU implementation of BSI with three

key optimizations: a) a new workload partitioning scheme for GPU

execution threads that reduces the number of memory accesses, b)

a register-tiling approach that keeps input data close to the execu-

tion units, and c) the replacement of weighted summation with

linear interpolations, which reduces the computational load and

increases the accuracy. 

In order to show how our approach affects the performance

and accuracy of image registration in a realistic scenario, we in-

tegrate our technique (publicly available 1 ) to the FFD registration

of NiftyReg [7] . NiftyReg is a lightweight medical image registra-

tion library. Recent works [20,21] use NiftyReg as a reference for

registration. 

We complete our study with a pre-clinical evaluation of our

method. We use FFD with our GPU-accelerated BSI on 1) CT

scans of patient-specific liver phantom [ 47 ], and 2) MRI scans of

a porcine liver model to compensate for a non-rigid soft tissue

deformation caused by pneumoperitoneum. Pneumoperitoneum is

a surgical procedure to inflate the patient’s abdomen, which is

necessary for any abdominal laparoscopic surgery. Pneumoperi-

toneum, however, deforms the shape of the organs [22,23,35] . To

account for this deformation, we capture new images during the

surgery (intra-operative) and use non-rigid image registration to

match them with images before pneumoperitoneum (pre-operative

images). We compute non-rigid image registration for pneumoperi-

toneum with state-of-art implementations and with our BSI im-

plementation. Using our implementation results in a performance

increase with the same accuracy as using the state-of-the-art im-

plementations. 
1 https://github.com/oresths/niftyreg _ bsi . 
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. Background 

In this section, we first introduce the foundations of B-spline in-

erpolation. Since our GPU implementation of BSI is specific to 3D

edical images (CT, MRI, or US volumes), formulations and anal-

sis focus on the 3D case. Second, we review two state-of-the-art

mplementations of BSI on GPUs. 

.1. B-spline interpolation theory 

We introduce B-spline interpolation for 3D images, i.e., the do-

ain of the image volume is in the x, y, z coordinate space. As

q. (1) shows [5,6] , the BSI transformation of FFD for each voxel

i.e., each interpolated point of FFD) with coordinates x, y, z is T ( x,

, z ). The BSI transformation is a function of control points φi,j,k ,

hich are arranged into a grid of dimensions n x × n y × n z . The

ontrol point grid is uniformly spaced, with δx , δy , and δz being

he spacing (in voxels) in the three dimensions. 

 (x, y, z) = 

3 ∑ 

l=0 

3 ∑ 

m =0 

3 ∑ 

n =0 

B l (u ) B m 

(v ) B n (w ) φi + l, j+ m,k + n (1)

here 

i = � x/δx � − 1 , 

j = � y/δy � − 1 , 

k = � z/δz � − 1 , 

u = x/δx − � x/δx � , 
v = y/δy − � y/δy � , 
 = z/δz − � z/δz � , 
 are the scalar B-spline coefficients [17] and φ are the control

oints. Each voxel is affected by four control points in each di-

ension. Thus, in a 3D space, 4 × 4 × 4 control points, forming

 cube (see Fig. 1 ), affect the inner tile of voxels. In general, in N-

imensional images, 4 N control points affect each voxel. 

.1.1. Tiles 

Tiles are logical groups of voxels that share common properties.

ased on Eq. (1) , we define tiles of δx × δy × δz dimensions. Fig. 2

llustrates a tile in a 2D example. We make two observations: 1)

he same control points, i.e., the ones surrounding the tile, affect

ll voxels inside the tile, and 2) control points of neighboring tiles

verlap. 

From the implementation perspective, partitioning a volume

nto tiles is a way of exploiting data reuse (i.e., reuse of control

oints) in on-chip memories, when calculating the interpolated

oxels. Thus, tiling saves memory traffic between off-chip and on-

hip memories. 

.2. State-of-the-art GPU implementations of BSI 

This section introduces the two state-of-the-art BSI methods

nd their respective GPU implementations, which we use as com-

arison points for our work. 

Texture Hardware (TH) Ruijters et al. [17,24] provide a texture

ardware method for BSI. They base their method on the obser-

ation that the weighted additions of Eq. (1) can be replaced by

 linear interpolation [16,17] . Linear interpolations are well-suited

or the GPU texture unit, that features a hardware interpolation

nit. The hardware interpolation unit calculates the interpolation

irectly and it does not require separate accesses to off-chip global

emory of the GPU to load the input control points. Hardware

nterpolation is fast but it has two main drawbacks. First, it has

nly 8 bits of accuracy [8] , which limits the resolution of the

nterpolation. Second, the values that the hardware interpolation

https://github.com/oresths/niftyreg_bsi
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Fig. 1. The cube of 4 × 4 × 4 control points that affect a voxel/tile in a 3D control 

point grid. Smaller cubes depict the grouping in trilinear interpolations. 
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nit fetches from the off-chip memory are a function of the ab-

olute position of each voxel. Therefore, TH cannot utilize custom

aching schemes to aggregate data transfers for neighboring voxels

 Appendix A ). 

Texture Hardware BSI is included in an easy-to-use library by

uijters et al. [24] and is used in recent works [25,26] . 

Thread per Voxel (TV) This method assigns one thread per image

lement, e.g., per voxel in the case of 3D images. 

Ellingwood et al. [6] present a GPU implementation of this

ethod that applies tiling ( Section 2.1.1 ). They assign one or more
Fig. 2. A 2D space div
hread blocks to each tile, with one thread for each voxel of the tile.

iling enables the reuse of control points, which are the same for

he whole tile, by keeping them in the fast on-chip shared memory.

NiftyReg [7] , a lightweight open-source medical image registra-

ion library, also uses the thread per voxel method. NiftyReg con-

ains optimized implementations of BSI for both CPUs and GPUs.

t is open-source and well-maintained, with competitive perfor-

ance against other state-of-the-art implementations [20,21] . The

PU implementation uses a simple, straightforward TV method,

hich does not take advantage of tiling. The CPU implementation,

owever, exploits tiling by applying multi-core and vectorization

ptimizations. 

. Optimizing B-spline interpolation 

This section presents our GPU implementation of BSI, which fol-

ows a different approach to the state-of-the-art implementations

i.e., TH and TV). In our approach, we assign one thread per tile of

oxels, as we explain in Sections 3.1 –3.3 . In Section 3.5 , we intro-

uce our implementations for CPU, which follow the GPU approach

artially. 

.1. Overview of our GPU implementation of BSI 

Our GPU implementation of BSI is based on two key ideas. 

First, an entire tile of voxels is assigned to a single GPU thread

 Thread per Tile , TT), in contrast to the one-thread, one-voxel ap-

roach. This TT assignment takes advantage of tiling in both on-

hip cache memory and registers: 1) tiling in cache memory mini-

izes the reads from off-chip memory, by maximizing the overlap

f input control points, and 2) tiling in registers minimizes the ac-

esses to cache memory, by reusing the input control points for

any voxels. 

Second, we replace the weighted sum of the basic formula of

SI with trilinear interpolations, in a similar way as TH does. We

alculate these trilinear interpolations using Fused Multiply-Add

FMA) instructions, which the GPU instruction set contains [8] .

MA increases both accuracy and speed in regard to regular multi-

lication and addition instructions. 

We give an in-depth description of our optimizations in the

ext sections. 
ided into tiles. 
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Fig. 3. Comparison of input loading and register optimization for Thread per Voxel with tiling (left) and Thread per Tile (right) for two neighboring tiles. 
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3.2. Thread per Tile (TT) 

In this section, we describe the optimization techniques that we

deploy in our TT approach to BSI. We show how the input loading

and register optimizations reduce memory accesses. 

3.2.1. Input loading optimization 

The main idea is to reduce loads from global memory by taking

advantage of the overlap of tiles assigned to neighboring threads.

Fig. 3 compares the TV approach with tiling (left), explained in

Section 2.2 , to our TT approach (right). 

In TV, each block of threads works on a unique tile of voxels.

Thus, each block requires 4 N input control points ( Section 2.1.1 ).

Therefore, for each tile, we need to move 4 N control points from

global memory to shared memory. Step 1 in Fig. 3 (left) illustrates

the required data movement from global memory to shared mem-

ory for a 2D example. In this example, we have two tiles and each

tile is assigned to one block. The two tiles imply the movement of

4 × 4 + 4 × 4 control points from global memory to shared mem-

ory. 

In TT, we assign one thread per tile to take advantage of over-

lapping neighboring tiles. Step 1 of Fig. 3 (right) illustrates the re-

duction in data movement to cache memory, with the overlap in

the x-direction. Two tiles require only 4 × 5 control points. In

3D medical images, the reduction in data movement is more no-

ticeable, because there is overlap in the three directions. As a re-

sult, our approach reduces the data movement from global mem-

ory dramatically. TT requires about 12 × and about 187 × (for

5 × 5 × 5 tiles) fewer memory transfers in comparison to TV and

TH ( Appendix A ). 
.2.2. Register optimization 

The second optimization technique that we apply to TT is based

n two main ideas: 1) we load the control points for all voxels of

he tile from cache memory only once, and 2) we keep the loaded

ontrol points in registers, which are the fastest on-chip memory,

ntil thread execution finishes. 

In TV, threads belonging to the same block work on individ-

al voxels of the same tile. For every voxel belonging to the tile,

he corresponding threads need to access exactly the same control

oints as all other threads of the block. Step 2 of Fig. 3 (left) illus-

rates the required data movement from shared memory to reg-

sters for a 2D example. In this example, each pixel is assigned

o one thread, and for every four pixels the corresponding four

hreads need to read (from shared memory to registers) sixteen

ontrol points each (i.e., 4 × 16 reads for every four pixels). 

In TT, the one-thread, one-tile assignment minimizes the data

ovement between cache memory and registers. For all voxels be-

onging to the tile, the corresponding thread needs to access from

ache memory a unique set of control points that is different from

he set accessed by any other thread of the block (there is overlap,

hough). By utilizing register tiling, the thread keeps the control

oints in registers, which are faster than cache memory [27] , to

rocess every voxel in the tile. Step 2 of Fig. 3 (right) illustrates

he reduction in data movement. For every four pixels, the cor-

esponding thread needs to read only sixteen control points (i.e.,

 × 16 reads for every four pixels). 

.3. Thread per Tile with Linear Interpolations (TTLI) 

We extend TT by reformulating the triple sum of Eq. (1) to tri-

inear interpolations. The basic idea is that a linear interpolation
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Table 1 

Differences between GPU and CPU implementations ( � means that an 

optimization technique is used in the CPU implementation). 

Optimization VT VV 

Input overlap Only in x -direction Only in x -direction 

Register tiling Partially � 

Linear interpolation � � 
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an replace an addition of two weighted addends. We can extend

his to three dimensions, where we combine eight addends into a

rilinear interpolation [16] . 

We calculate a trilinear interpolation as a combination of seven

inear interpolations (in our implementation, we do not use the

ardware interpolation unit as this would prevent us from increas-

ng input data locality and output data accuracy ( Section 2.2 )). The

inear interpolations are beneficial to the performance of our ap-

roach because the compiler maps linear interpolations to FMA in-

tructions. FMA instructions are preferable for two reasons. First,

MA is more accurate because it executes multiplication and addi-

ion in the same step, with a single rounding. Second, FMA is faster

ecause it executes both multiplication and addition with a single

nstruction [28] . 

Fig. 1 illustrates the 4 × 4 × 4 neighborhood of control points

hat affect a tile of voxels. Each one of the 2 × 2 × 2 colored

ub-cubes of control points corresponds to one trilinear interpo-

ation. For each voxel in the tile, the respective thread calculates

ach one of the eight trilinear interpolations. The arithmetic oper-

tions that are needed for each trilinear interpolation (i.e., colored

ub-cube) are independent, thus enabling Instruction Level Paral-

elism (ILP) [27] . 

.4. Implementation details of TT and TTLI 

Register tiling, which we employ in our approach, requires a

areful management of the registers. We explain some of our im-

lementation decisions in the following paragraphs. 

Register allocation The deformation field of a 3D image requires

4 control points and each control point comprises three values,

ne for each of the three coordinates ( x , y , z ). Therefore, we need

 × 64 = 192 registers for the control points only. The control point

rid is aligned to the voxel grid and uniformly spaced, there-

ore we store the scalar B-spline coefficients in Look-Up-Tables

LUTs). TT requires 235 registers in total, whereas TTLI requires

55 registers. 

Thread block configuration The amount of required regis-

ers limits the maximum active threads per Symmetric Multi-

rocessor (SM) to 256 [8] . We arrange threads to blocks of

 × 4 × 4 threads. We select this arrangement because a cube

s the geometrical structure that maximizes overlap and conse-

uently minimizes memory transfers (i.e., minimizes Eq. (A.4) in

ppendix A ). 

Performance at low occupancy Shared and cache memories are

lower than registers, therefore TT keeps the control points in reg-

sters permanently. We arrange input data in such a way that there

re no spills (although in TTLI we have to store a few control

oints into shared memory). Due to the large amount of registers

ur approach requires, the occupancy of the GPU falls to 12.5% for

UDA Compute Capabilities (CC) before 7.x and to 25% for newer

C [8] . Despite the low occupancy, we can maximize resource uti-

ization by using ILP and avoiding the use of cache memories.

ur approach uses a register-only approach to increase the perfor-

ance substantially [27] . 

.5. Application of our approach to CPUs 

We can apply our TTLI approach to the CPU implementation of

SI. Table 1 summarizes the main differences with the GPU imple-

entations. Some optimizations are not fully applicable to the CPU

mplementation, because they are tailored to the GPU architec-

ure. GPUs allow for more fine-grained parallelism in comparison

o CPU, which makes GPUs more efficient with small 3D groups of

iles with regards to cache and register management. We develop

wo parallel implementations of BSI on CPUs, which take advan-
age of the several cores and the SIMD units (SSE/AVX) that CPUs

ave [29,30] . 

SIMD units pack many single values, which we call elements , in

 special register, called a vector , thus applying a form of register

iling. 

Vector per Tile (VT) In this method, we parallelize by using

IMD vectors to simultaneously process many voxels of a tile. Each

hread processes δx voxels simultaneously. We iterate through the

 , z -dimensions of the tile, δx voxels at a time. The drawback of this

ethod is that a SIMD vector is not fully utilized if δx , a user con-

gurable parameter, is not a multiple of the SIMD vector length. 

Vector per Voxel (VV) In this method, we parallelize by using

IMD vectors to simultaneously process each of the trilinear inter-

olations a single voxel requires. This means that, using the SIMD

nit, each thread processes simultaneously all colored sub-cubes

 voxel requires ( Fig. 1 ). Conveniently, the SIMD vector length is

qual to the number of sub-cubes. 

. Pre-clinical dataset acquisition 

In order to test our implementations of BSI in a pre-clinical

pplication scenario, we perform a pre-clinical study where we

se FFD. We create a dataset (publicly available) [31] which con-

ists of two sets of subjects and imaging modalities: 1) a patient-

pecific liver phantom [32] with DynaCT scanning, and 2) a porcine

odel with MRI scanning, to validate the registration process in-

ivo. Table 2 lists the characteristics of the collected dataset. 

In this section, we describe the dataset in detail. We present

valuation results in Sections 6 and 7 . 

Patient-specific phantom of liver The patient-specific liver phan-

om presents a total of five tumors and a blood vessel tree. The

iver phantom used in our experiments was produced by the AR-

ORG centre and Cascination® [32] and has been used by Tea-

ini et al. for registration studies [33] . We performed three intra-

perative CT scans (Artis Zeego, Siemens®) (DynaCT) of the liver

hantom in the OR. For each scan, we apply non-rigid deforma-

ions to the phantom, which we try to correct through FFD ( Phan-

om 1, Phantom 2, Phantom 3 ). An example of the liver phantom

cans is visible in Fig. 4 a and b. 

Porcine model We performed a porcine study to acquire pre-

perative (without pneumoperitoneum) and intra-operative (post 

neumoperitoneum) MRI scans. These were used to study the

eformation that the liver undergoes due to pneumoperitoneum

lone. We performed this study at Oslo University Hospital through

he use of a 3T Siemens MRI scanner, model Ingenia Philips® [34] .

e performed pneumoperitoneum at 14 mmHg. Both MRI scans

ere performed with injection of contrast, as done in patients,

o improve imaging of the liver parenchyma and blood vessels

Flow rate 5.0 and Volume 11.0, based on the weight of the

nimal at 55 kg). The MRI scans are thin sliced (1.5 mm in

orcine 1 and 1 mm in Porcine 2 ) enhanced-T1 high-resolution

sotropic volume examination (e-THRIVE) scans. The deformation

f the liver due to pneumoperitoneum is visible in the differ-

nces between images (c) and (d) in Fig. 4 and further explored

n [35] . 
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Table 2 

Image characteristics. 

Registration pair Resolution Voxel count (millions) Voxel Spacing 

Phantom 1 512 × 228 × 385 44.94 0.49 × 0.49 × 0.49 

Phantom 2 294 × 130 × 208 7.95 0.90 × 0.90 × 0.90 

Phantom 3 294 × 130 × 208 7.95 0.90 × 0.90 × 0.90 

Porcine 1 303 × 167 × 212 10.73 0.94 × 0.94 × 1.00 

Porcine 2 267 × 169 × 237 10.70 0.94 × 0.94 × 1.00 

Fig. 4. Medical images used for pre-clinical evaluation of our optimized image registration through FFD. (a) and (b) show two DynaCT scans of the liver phantom, and (c) 

and (d) are MRI scans of the porcine model, respectively without (c) and with pneumoperitoneum applied (d). 
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5. B-spline interpolation evaluation 

In this section, we evaluate our BSI implementations on GPUs

and CPUs in terms of performance and accuracy, and compare

them to state-of-the-art implementations. 

5.1. Evaluation methodology 

Configuration In our evaluation, we use one CPU and two GPUs.

The CPU is a quad-core Intel i7-7700HQ@2.8 GHz with Hyper-

Threading. We use gcc v5.4 compiler. To show the performance

and stability among different GPU generations, we use two GPUs

of different generations: 1) NVIDIA GeForce GTX 1050 (with Pascal

architecture [8] ), and 2) NVIDIA GeForce RTX 2070 (with Turing ar-

chitecture [36] ). We use CUDA SDK v9.2 for the first GPU and v10.1

for the second GPU. We use CUDA event API to acquire the timing

results. 

Comparison baseline We compare our approaches to the state-

of-the-art BSI implementations ( Section 2.2 ). For TH, we use the

library from Ruijters et al. [24] . For TV, we create an implementa-

tion that is based on the recent literature [6,7,19] . This implemen-

tation of TV uses tiling and is tuned for the GPUs we use. We refer

to this implementation as TV-tiling . We also compare to the opti-

mized GPU implementation of the NiftyReg library [7] , which does

not use tiling, as GPU reference, and the optimized CPU implemen-

tation of NiftyReg [7] as CPU reference. We refer to the NiftyReg

implementations as NiftyReg (TV) . 

Dataset and metrics We measure the timing information of BSI

while applying registration on our dataset. We use two metrics to
easure the performance: 1) time per voxel is the execution time

ecessary to interpolate a single voxel, and 2) speedup is the per-

ormance improvement over NiftyReg (TV). 

Parameters We select five different tile sizes to evaluate the

ehavior of the algorithms under different parameters, namely

 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5, 6 × 6 × 6, 7 × 7 × 7. We

elect these tile sizes because they are centered around 5 × 5 × 5,

hich is the default tile size for non-rigid registration in NiftyReg. 

.2. GPU performance 

Fig. 5 a and b show the average time per voxel for TH, NiftyReg

T V), T V-tiling, TT, and TTLI on the GTX 1050 and the RTX 2070

PUs, respectively. 

We make three main observations. First, TTLI is the fastest im-

lementation in all cases. Second, the time per voxel is almost in-

ependent of the tile size for all implementations except TV-tiling,

or which the thread block size changes with the tile size. The rea-

ons are three. 1) Bigger tiles leave more threads inactive at the

orders of the image. 2) Bigger tiles decrease the coalescence of

PU memory accesses. In our approach, a single thread stores an

ntire tile in the output ( Fig. 3 , Step 3). 3) If the number of SMs

oes not divide the amount of blocks exactly, some SMs may re-

ain idle (tail effect). In conclusion, the performance of our ap-

roach in regards to different tile sizes, is a balance between the

cceleration that the reduction of data movement offers and the

eceleration that border effects and memory uncoalescence cause.

hird, for all implementations the coefficient of variation (error

ars show the standard deviation across the images of our dataset)
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Fig. 5. Average time per voxel of the five registration pairs for various tile sizes on GTX 1050 GPU (a) and RTX 2070 GPU (b). Error bars depict the standard deviation of 

time per voxel. 

Fig. 6. Average speedup over NiftyReg (TV) for the five registration pairs with different tile sizes on the GTX 1050 GPU (a) and the RTX 2070 GPU (b). Error bars depict the 

standard deviation of the speedup. 
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s less than 3% which reflects that the image contents do not affect

he performance. The reason is that BSI is regular, i.e., it operates

n all voxels uniformly. 

Fig. 6 a and b show the average speedup over NiftyReg (TV)

or TH, TV-tiling, TT, and TTLI on the GTX 1050 and the RTX 2070

PUs, respectively. 

We make two observations. First, our TTLI approach is 6.5 × (up

o 7 ×) faster than NiftyReg (TV), on average. TTLI outperforms the

econd fastest (TT) by an average of 1.77 × on GTX 1050 and 1.5 ×
n RTX 2070. Second, TTLI shows similar speedups over NiftyReg

TV) on both Pascal architecture (GTX 1050) and Turing architec-

ure (RTX 2070) GPUs, which demonstrates that our optimizations

re widely applicable and performance-portable. 

.2.1. Analysis of performance limitations 

This section describes the limitations that define the perfor-

ance of our approach. 
TT does not provide significant speedup over TV-tiling. The rea-

on is that our TT approach reduces data movement significantly,

hich makes TT compute-bound. We observe with the NVIDIA’s

isual Profiler [37] that the compute utilization of TT is at about

0% of the peak. Since the amount of computation in TT is not re-

uced with respect to TV-tiling, the potential improvement is lim-

ted. 

Reformulating the summation of TT to trilinear interpolations

 Section 3.3 ) reduces the computational complexity of Eq. (1) to

alf ( Appendix B ) and increases the usage of FMA instructions. TTLI

s 50–80% faster than TT. After removing the computational inten-

ity problem, TTLI is no longer compute-bound. The main bottle-

eck is the uncoalescence of the output ( Fig. 3 , Step 3). In our ex-

eriments, fixing the uncoalescence proved more computationally

ostly than the uncoalescence itself. 

Thread divergence, caused by the inactive threads at the bor-

ers of the image, reduces the computation throughput for both

T and TTLI. 
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Fig. 7. Average time per voxel (a) and speedup (b) of BSI for various tile sizes using our implementation of BSI on CPUs. Error bars depict the standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Average absolute error of BSI approaches on GPUs with 

respect to a high precision CPU implementation. 

Implementation Error ( e −6 ) 

Texture Hardware 9245 

Thread per Voxel (Tiling) 5.5 

NiftyReg (TV) GPU 5.3 

Thread per Tile 5.6 

Thread per Tile (Interp.) 2.8 

Table 4 

Average absolute difference of BSI approaches on CPUs 

with respect to a high precision CPU implementation. 

Implementation Error ( e −6 ) 

NiftyReg (TV) CPU 6.0 

Vector per Tile 3.0 

Vector per Voxel 3.0 
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With 5 × 5 × 5 tile, TTLI achieves 670 GFLOP/s and 62 GB/s

on the GTX 1050 2 . The empirical limits [38] of the GTX 1050 are

2091 GFLOP/s and 95 GB/s. We observe that TTLI is close to the

bandwidth limit, but not so close to the computation limit. 

5.3. CPU performance 

We apply our approach to BSI to our CPU implementations

( Section 3.5 ). Fig. 7 a and b show respectively time per voxel and

speedup results of our CPU approaches for different tile sizes. 

We make four observations. First, our CPU implementations

(VT and VV) outperform the baseline NiftyReg (TV) by an aver-

age of 4.12 × and 3.30 ×, respectively. Second, for all implementa-

tions, larger tiles result in lower time per voxel, as they can take

more advantage of the CPU cache hierarchy. This effect is more

pronounced in VT, which achieves a speedup of almost 5 × for the

largest tiles. Third, the speedup of VT increases as the tile size in-

creases because bigger tiles fill more slots of the SIMD vectors. VT

is the fastest option when more than 3 slots are filled. Fourth, the

speedup of VV does not increase, as the time per voxel of NiftyReg

decreases with faster rate than the time per voxel of VV. VV is the

recommended option only for 3 × 3 × 3 tiles. 

5.4. Accuracy 

Our implementations employ FMA instructions, which are more

accurate than regular multiplications [8] , in the calculation of lin-

ear interpolations. In this section, we show the accuracy improve-

ments that stem from FMA instructions. We create a high precision

CPU implementation by using double precision arithmetic (64-bits

floating point numbers) and we use this implementation as refer-

ence. 

Tables 3 and 4 show respectively the average absolute error of

all GPU implementations and all CPU implementations with re-

spect to the high precision CPU implementation. 

We draw three conclusions. First, our implementations that em-

ploy FMA instructions (i.e., TTLI on GPUs, VT and VV on CPUs) are

almost two times more accurate than the rest. Second, TH is signif-

icantly less accurate than the rest of the implementations, as ex-

pected from the low accuracy of interpolation hardware [8] . TH is

3300 × less accurate than TTLI. Third, most GPU implementations
2 NVIDIA profiler (version 2019.4.0) does not provide metrics for counting FLOPs 

on the RTX 2070. 

i

how accuracy values in the same order of magnitude as CPU im-

lementations. 

. Registration evaluation 

In this section, we evaluate the performance impact of our BSI

mplementations on the overall registration process. 

.1. Evaluation methodology 

To test the contribution of our BSI implementations to the to-

al time required for the registration of medical images, we inte-

rate our TTLI approach into NiftyReg 3 [7] . The control points in

iftyReg correspond to a coarse deformation field. We calculate the

ne deformation field (i.e., the displacement of all voxels) by inter-

olating the coarse deformation field using BSI. We compare the

otal registration time with our BSI to the original NiftyReg reg-

stration, on our dataset presented in Section 4 . We evaluate the

erformance of non-rigid registration on two platforms: a) a quad-

ore Intel i7-7700HQ@2.8 GHz CPU (with HyperThreading) and a

TX 1050 GPU, and b) a six-core Intel i7-8700@3.2 GHz CPU (with

yperThreading) and an RTX 2070 GPU. 

We set the tile size to 5 × 5 × 5, which is the default setting

n NiftyReg. 
3 https://github.com/oresths/niftyreg _ bsi 

https://github.com/oresths/niftyreg_bsi
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Fig. 8. Time and speedup of registration with our improved BSI GPU approach on 

GTX 1050. 

Fig. 9. Time and speedup of registration with our improved BSI GPU approach on 

GTX 1050. 
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.2. Performance evaluation 

Figs. 8 and 9 show the total registration time and the speedup

f our approach on the two platforms. 

We draw two major conclusions. First, registration with our BSI

pproach is faster in all images on both platforms. The speedup of

egistration is 1.30 ×, on average, on the platform with a GTX 1050

PU, and 1.14 × on the platform with an RTX 2070 GPU. Second,

lthough the performance improvement of our BSI approach is al-

ost the same for both GPUs, we do not observe the same results

or the entire image registration. The reason resides in Amdahl’s

aw [39] : while BSI represents 27% of the total registration time on

he platform with a GTX 1050 GPU, it takes only 15% on the plat-

orm with an RTX 2070 GPU. As a result, the overall performance

mpact on the registration workflow depends on the characteristics

f the compute platform. 
ig. 10. Comparison of registration through qualitative checkerboard assessment on live

Right) shows the results of non-rigid FFD using our BSI implementation. 
. Clinical validation of image registration 

In this section, we present the validation of our implementa-

ion of accelerated FFD on our pre-clinical dataset described in

ection 4 . 

Qualitative assessment We perform qualitative assessment of the

egistration using a checkerboard validation procedure [40] . Our

ethod provides accurate registration for the parenchyma (the

uter shape of the liver is preserved correctly) for both the liver

hantom and porcine model. Tumors and vessel structures of the

hantom are consistent between images ( Fig. 10 ) and approxi-

ately also vessel structures for the porcine model are correctly

egistered ( Fig. 11 ). 

Quantitative assessment 

We create normalized difference images between the output

f the registration and the target intra-operative image for three

egistration approaches: 1) affine, 2) proposed, and 3) original

iftyReg ( Figs. 12 and 13 ). Table 5 shows the mean absolute er-

or (MAE) for all images of our dataset. As expected, the mismatch

o the target intra-operative image is greater with affine than with

on-rigid registration approaches. The two non-rigid registration

pproaches perform almost equally (the average MAE across the

ve image pairs is 0.2160 for affine, 0.1240 for our approach and

.1249 for original NiftyReg. 

In order to quantify how the different registration approaches

ffect the accuracy of the registration as output images, we ap-

ly Structured Similarity Index Metric (SSIM) [41] to our dataset.

ith the SSIM, we measure the similarity between the output

f the registration approach and the target intra-operative image

 Table 5 ). 

We make three observations. First, the non-rigid registration

pproaches have much higher similarity than the affine registra-

ion approach. Second, our approach and the original NiftyReg have

lmost equal similarities. Third, our approach gives slightly better

imilarity than the original NiftyReg approach. Further evaluation

f accuracy of the registration can be inferred from the original

tudies performed by Modat et al. [7] . 

. Discussion 

In this work we optimize BSI and integrate it to FFD to accel-

rate the performance of medical image registration. However, our

mproved BSI can also be used in generic image interpolation ap-

lications, e.g., image zooming [42] , by using image pixels as the

ontrol points. 

The performance of image registration can be further improved

y merging the other steps of FFD with B-spline interpolation. By

ptimizing the rest of the registration process, the execution time

f the registration further diminishes, enabling new possibilities

or fast intra-operative updates without intra-operative CT acqui-

itions, e.g., through liver models reconstructed with US [43] or

hrough stereo video reconstructions [33] . 
r phantom scans. (Left) shows the registration results using an affine registration. 
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Fig. 11. Comparison of registration through qualitative checkerboard assessment on porcine liver scans. (Left) shows the registration results using an affine registration. 

(Right) shows the results of non-rigid FFD using our BSI implementation. 

Fig. 12. Comparison of registration through quantitative difference image assessment on liver phantom scans. (Left) shows results using an affine registration; (Center) shows 

the results of non-rigid FFD using our BSI implementation; (Right) shows the results of non-rigid FFD using original NiftyReg. 

Fig. 13. Comparison of registration through quantitative difference image assessment on porcine liver scans. (Left) shows results using an affine registration; (Center) shows 

the results of non-rigid FFD using our BSI implementation; (Right) shows the results of non-rigid FFD using original NiftyReg. 

Table 5 

Mean absolute error (Left) on normalised outputs of affine registration and non-rigid 

registration with our approach and original NiftyReg, using the intra-operative image 

as reference. Structured Similarity Index Metric (Right) of the registration output, using 

the intra-operative image as reference). 

Registration 

pair 

MAE SSIM 

Affine Proposed NiftyReg Affine Proposed NiftyReg 

Phantom 1 0.229 0.13 0.131 0.865 0.929 0.934 

Phantom 2 0.234 0.172 0.179 0.916 0.952 0.946 

Phantom 3 0.256 0.174 0.172 0.889 0.952 0.95 

Porcine 1 0.201 0.072 0.072 0.797 0.912 0.911 

Porcine 2 0.162 0.072 0.071 0.716 0.737 0.737 

Average 0.2164 0.1240 0.1249 0.8368 0.8963 0.8956 
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The speedup of image registration through optimized FFD is im-

portant not only for pneumoperitoneum compensation, but also

for compensation of several other deformations that the liver com-

monly undergoes during surgery. If real-time registration is possi-

ble, FFD can be used in IGS to compensate for deformations that

result from lifting the liver with a surgical instrument or resecting

liver ligaments (liver mobilization). 

A limitation of our current implementations is that they work

only with control point grids that are aligned to the voxel grid and

uniformly spaced. Uniform spacing is usually sufficient for medi-

cal images [6,19] . Support for non-uniform grids is possible with

minimal changes (e.g., calculating B-spline basis functions weights

on-the-fly). We leave this support for future work. 
. Conclusion 

This paper presents our approach to B-spline interpolation,

hich is optimized to reduce data movement. The key idea of our

pproach is to assign one worker thread per tile of voxels. This

as two main advantages. First, data movement during input load-

ng is significantly reduced. Second, the input control points can

e kept in registers during the entire computation. To further en-

ance the performance of our implementation, we rearrange the

eighted summation of control points into trilinear interpolations.

his results in two key advantages. First, the trilinear interpolations

educe the computational load. Second, they increase the interpo-

ation accuracy. 
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Our experimental evaluation on two sets of subjects and imag-

ng modalities shows that our BSI approach offers im proved per-

ormance and accuracy with respect to state-of-the-art implemen-

ations. TTLI, our best approach on GPUs, performs up to 7 × faster

n comparison to the other GPU implementations. Our imple-

entations that use trilinear interpolations perform approximately

 × better than the other in regard to interpolation accuracy. 

We integrate our BSI approach into the NiftyReg medical image

egistration library and validate it in a pre-clinical application sce-

ario. Our approach improves the performance of non-rigid image

egistration by 30% and 14%, on average, on our two platforms with

 GTX 1050 GPU and an RTX 2070 GPU, respectively. The improved

erformance reduces the computation time of image registration.

herefore, faster updates of the organ and its structures are possi-

le during IGS. 

As a result, non-rigid registration of medical images can ben-

fit from our BSI approach on GPUs to greatly enhance the per-

ormance and accuracy of registration in time-critical applications

e.g., image guided surgery). 
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ppendix A. Off-chip memory to on-chip memory data 

ovement 

We use the external memory model [44] to describe the data

ovement from off-chip memory to on-chip memory. We consider

 3D image. Let us define M as the total number of voxels, N = 64

s the number of control points, T as the number of voxels inside

ach tile, and L as the size, in words (words are 32-bits long, a

ommon size for storing integer and real numbers), of transactions

nto the cache (i.e., transactions between off- and on- chip mem-

ry). The L sized memory transfers of the three cases we are inter-

sted in are: 

) No tiles : When we do not have tiles, for each of the M voxels,

e need to transfer N control points from global memory to shared

emory. Transfers happen in L sized chunks. Hence, the total num-

er of transfers required is 

N × M 

L 
(A.1) 

) Hardware trilinear interpolation : Each voxel is affected by the 4 3 

ontrol points surrounding it. However, if we use the texture unit

o get their trilinear interpolations directly, only 2 3 loads are re-

uired [16] . Therefore, when we utilize the texture hardware for

oading the input, for each of the M voxels, we need to transfer

 

3 control points from global memory to cache memory. Transfers
appen in L sized chunks. Hence, the total number of transfers re-

uired is 

2 

3 × M 

L 
(A.2) 

) A block per tile : When we use a block for each tile, for each

ile we need to transfer N control points from global memory to

hared memory. Each tile contains T voxels, thus the total number

f tiles is M / T . Transfers happen in L sized chunks. Hence, the total

umber of transfers required is 

N × M 

T × L 
(A.3) 

) Blocks of tiles : When we have 3D blocks of tiles, and each block

ontains l × m × n tiles, for each block we need to transfer (4 + l −
) × (4 + m − 1) × (4 + n − 1) ( Section 3.2.1 ) control points from

lobal memory to shared memory (or cache). Each block contains

 × m × n tiles and each tile contains T voxels, thus the total num-

er of blocks is M /( l × m × n × T ). Transfers happen in L sized

hunks. Hence, the total number of transfers required is 

(4 + l − 1) × (4 + m − 1) × (4 + n − 1) × M 

l × m × n × T × L 
(A.4) 

Observations We make the following four observations. First,

 hardware trilinear interpolation implementation requires fewer

emory transfers than a no tiles implementation because 2 3 < N

n all cases. Second, a block per tile implementation requires fewer

emory transfers than a hardware trilinear interpolation imple-

entation because N / T < 2 3 when T > 8. T > 8 is a rare case ( T is

25 by default in NiftyReg). Third, a blocks of tiles implementation

equires fewer memory transfers than a block per tile implemen-

ation because (4+ l−1) ×(4+ m −1) ×(4+ n −1) 
l×m ×n 

< N as long as a block con- 

ains more than one tile. Fourth, the CPU implementations are a

pecial case of Eq. (A.4) , in which l = m = 1 , i.e., each thread pro-

esses contiguous tiles in the x-axis direction. 

ppendix B. Computational complexity 

In order to evaluate the arithmetic performance of TTLI and TT,

e perform the computational analysis of both implementations in

his section. 

TT For every voxel of the output image, we need to calculate

he triple sum in Eq. (1) . Each operand of the summation requires

he multiplication of one control point ( φ) with three weights ( B ).

hus, each voxel requires 

(64 summ ands ) × (3 mult ipli cati ons + 1 accu mula tion ) − 1 = 255 

ector ( φ is a 3D vector in deformation fields) arithmetic opera-

ions. The calculation of Eq. (1) requires 4 + 4 + 4 = 12 scalar loads

or the weights and 64 vector loads for the control points. If we

se one weight for the B l ( u ) · B m 

( v ) · B n ( w ) product, instead of

hree individual weights, the required operations decrease to 

(64 summ ands ) × (1 mult ipli cati ons + 1 accu mula tion ) − 1 = 127 

same as a parallel reduction) and the weights to be loaded

ncrease to 4 × 4 × 4 = 64 . This is not suitable for our register-only

mplementations, because there are not enough registers to store

he 64 weights and the use of one of the caches would impact the

erformance substantially ( Section 3.4 ). 

TTLI For every voxel of the output image, we reformulate the

ummation of the 4 × 4 × 4 weighted control points to trilinear

nterpolations. We divide the 4 × 4 × 4 cubic neighborhood to

ight 2 × 2 × 2 sub-cubes, as in Fig. 1 . Each sub-cube corresponds

o a trilinear interpolation. A trilinear interpolation requires seven

inear interpolations for its calculation. A linear interpolation has

he form a + w ∗ (b − a ) , which equals to a subtraction and a

used multiply-accumulate (FMA) operation. Thus, for the eight

ub-cubes and the ninth final sub-cube that is formed by the eight

esults of the eight trilinear interpolations, we have 

https://doi.org/10.13039/501100007601
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(9 cubes ) × (7 line ar inte rpol atio ns ) × (2 oper atio ns ) = 126 opera-

tions for each voxel. 

Observations Without taking into consideration instruction dual-

issue, �( n ) equals to 255 ∗(number of voxels) and 126 ∗(number of

voxels) respectively. 

References 

[1] A. Bartoli, T. Collins, N. Bourdel, M. Canis, Computer assisted minimally in-
vasive surgery: is medical computer vision the answer to improving laparo-

surgery? Med. Hypotheses 79 (6) (2012) 858–863, doi: 10.1016/j.mehy.2012.09.
007 . 

[2] S. Bernhardt, S.A. Nicolau, L. Soler, C. Doignon, The status of augmented reality
in laparoscopic surgery as of 2016, Medi. Image Anal. 37 (2017) 66–90, doi: 10.

1016/j.media.2017.01.007 . 
[3] A. Teatini , T. Langø, B. Edwin , O. Elle , et al. , Assessment and comparison of tar-

get registration accuracy in surgical instrument tracking technologies, in: 2018

40th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), IEEE, 2018, pp. 1845–1848 . 

[4] A. Sotiras , C. Davatzikos , N. Paragios , Deformable medical image registration: a
survey, IEEE Trans. Med. Imaging 32 (7) (2013) 1153 . 

[5] D. Rueckert, L.I. Sonoda, C. Hayes, D.L. Hill, M.O. Leach, D.J. Hawkes, Nonrigid
registration using free-form deformations: application to breast MR images.,

IEEE Trans. Med. Imaging 18 (8) (1999) 712–721, doi: 10.1109/42.796284 . 

[6] N.D. Ellingwood, Y. Yin, M. Smith, C.L. Lin, Efficient methods for implementa-
tion of multi-level nonrigid mass-preserving image registration on GPUs and

multi-threaded CPUs, Comput. Methods Programs Biomed. 127 (2016) 290–
300, doi: 10.1016/J.CMPB.2015.12.018 . 

[7] M. Modat, G.R. Ridgway, Z.A. Taylor, M. Lehmann, J. Barnes, D.J. Hawkes,
N.C. Fox, S. Ourselin, Fast free-form deformation using graphics processing

units, Comput. Methods Programs Biomed. 98 (3) (2010) 278–284, doi: 10.1016/

j.cmpb.20 09.09.0 02 . 
[8] NVIDIA, CUDA C Programming Guide 9.0(2017). 

[9] E. Smistad , T.L. Falch , M. Bozorgi , A.C. Elster , F. Lindseth , Medical image seg-
mentation on GPUs–a comprehensive review, Med. Image Anal. 20 (1) (2015)

1–18 . 
[10] J. Gai , N. Obeid , J.L. Holtrop , X.-L. Wu , F. Lam , M. Fu , J.P. Haldar , W.H. Wen-mei ,

Z.-P. Liang , B.P. Sutton , More impatient: a gridding-accelerated toeplitz-based

strategy for non-cartesian high-resolution 3D MRI on GPUs, J. Parallel Distrib.
Comput. 73 (5) (2013) 686–697 . 

[11] S.S. Stone, J.P. Haldar, S.C. Tsao, W.-m.W. Hwu, B.P. Sutton, Z.-P. Liang, Accel-
erating advanced MRI reconstructions on GPUs, J. Parallel Distrib. Comput. 68

(10) (2008) 1307–1318, doi: 10.1016/j.jpdc.2008.05.013 . 
[12] H. Wang , H. Peng , Y. Chang , D. Liang , A survey of GPU-based acceleration tech-

niques in MRI reconstructions, Quant. Imaging Med. Surg. 8 (2) (2018) 196 . 

[13] T. Kalaiselvi , P. Sriramakrishnan , K. Somasundaram , Survey of using GPU CUDA
programming model in medical image analysis, Inform. Med. Unlocked 9

(2017) 133–144 . 
[14] R. Palomar , J. Gómez-Luna , F.A. Cheikh , J. Olivares , O.J. Elle , High-performance

computation of Bézier surfaces on parallel and heterogeneous platforms, Int. J.
Parallel Program. 46 (6) (2018) 1035–1062 . 

[15] N. Satpute, R. Naseem, E. Pelanis, J. Gomez-Luna, F. Alaya Cheikh, O.J. Elle,

J. Olivares, GPU acceleration of liver enhancement for tumor segmentation,
Comput. Methods Programs Biomed. 184 (2020) 105285, doi: 10.1016/j.cmpb.

2019.105285 . 
[16] C. Sigg , M. Hadwiger , Fast third-order texture filtering, GPU Gems 2 (2005)

313–329 . 
[17] D. Ruijters, B.M. ter Haar Romeny, P. Suetens, Efficient GPU-based texture in-

terpolation using uniform B-splines, J. Graph. GPU Game Tools 13 (4) (2008)
61–69, doi: 10.1080/2151237X.2008.10129269 . 

[18] X. Du, J. Dang, Y. Wang, S. Wang, T. Lei, A parallel nonrigid registration al-

gorithm based on B-spline for medical images, Comput. Math. Methods Med.
(2016), doi: 10.1155/2016/7419307 . 

[19] J.A. Shackleford, N. Kandasamy, G.C. Sharp, On developing B-spline registration
algorithms for multi-core processors, Phys. Med. Biol. 55 (21) (2010) 6329–

6351, doi: 10.1088/0031-9155/55/21/001 . 
[20] I. Peterlík , H. Courtecuisse , R. Rohling , P. Abolmaesumi , C. Nguan , S. Cotin ,

S. Salcudean , Fast elastic registration of soft tissues under large deformations,

Med. Image Anal. 45 (2018) 24–40 . 
[21] C.P. Lee , Z. Xu , R.P. Burke , R. Baucom , B.K. Poulose , R.G. Abramson , B.A. Land-

man , Evaluation of five image registration tools for abdominal CT: Pitfalls and
opportunities with soft anatomy, in: Medical Imaging 2015: Image Processing,

9413, International Society for Optics and Photonics, 2015, p. 94131N . 
[22] J.S. Heiselman, L.W. Clements, J.A. Collins, J.A. Weis, A.L. Simpson, S.K. Gee-
varghese, T.P. Kingham, W.R. Jarnagin, M.I. Miga, Characterization and correc-

tion of soft tissue deformation in laparoscopic image-guided liver surgery,
Journal of Medical Imaging (2) (2018), doi: 10.1117/1.JMI.5.2.021203 . In Press 

[23] S.F. Johnsen , S. Thompson , M.J. Clarkson , M. Modat , Y. Song , J. Totz , K. Gu-
rusamy , B. Davidson , Z.A. Taylor , D.J. Hawkes , S. Ourselin , Database-based

estimation of liver deformation under pneumoperitoneum for surgical im-
age-guidance and simulation, Lect. Notes Comput. Sci. 9350 (2015) 450–458 . 

[24] D. Ruijters, P. Thévenaz, GPU prefilter for accurate cubic B-spline interpolation,

Comput. J. 55 (1) (2010) 15–20, doi: 10.1093/comjnl/bxq086 . 
[25] F. Andersson , M. Carlsson , V.V. Nikitin , Fast algorithms and efficient GPU im-

plementations for the radon transform and the back-projection operator rep-
resented as convolution operators, SIAM J. Imaging Sci. 9 (2) (2016) 637–664 . 

[26] J. Carron , A. Lewis , Maximum a posteriori CMB lensing reconstruction, Phys.
Rev. D 96 (6) (2017) 63510 . 

[27] V. Volkov , Better performance at lower occupancy, Proc. GPU Technol. Conf.

(2010) 1–75 . 
[28] N. Whitehead, A. Fit-Florea, Precision & performance: floating point and IEEE

754 compliance for NVIDIA GPUs, NVIDIA White Paper 21 (10) (2011) 767–775,
doi: 10.1111/j.1468-2982.20 05.0 0972.x . 

[29] A. Fog , The Microarchitecture of Intel, AMD and VIA CPUs: an Optimization
Guide for Assembly Programmers and Compiler Makers, 2018th ed., Technical

University of Denmark, 2018 . 

[30] Intel, Intel intrinsics guide, 2019, (software.intel.com, retrieved January 17,
2019). 

[31] O. Jakob Elle, A. Teatini, O. Zachariadis, Data for: accelerating B-spline inter-
polation on GPUs: application to medical image registration, Mendeley Data

(2019), doi: 10.17632/kj3xcd776k.1 . 
[32] A. Pacioni, M. Carbone, C. Freschi, R. Viglialoro, V. Ferrari, M. Ferrari,

Patient-specific ultrasound liver phantom: materials and fabrication method,

Int. J. Comput. Assist.Radiol. Surg. 10 (7) (2015) 1065–1075, doi: 10.1007/
s11548- 014- 1120- y . 

[33] A. Teatini , W. Congcong , P. Rafael , A.C. Faouzi , B. Azeddine , E. Bjørn , E.O. Jakob ,
Validation of stereo vision based liver surface reconstruction for image guided

surgery, in: Colour and Visual Computing Symposium (CVCS), IEEE, 2018,
pp. 1–6 . 

[34] PHILIPS, Ingenia: instructions for use, 2014. 

[35] A. Teatini , E. Pelanis , D.L. Aghayan , R.P. Kumar , R. Palomar , Å .A . Fretland , B. Ed-
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