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a b s t r a c t 

Background and Objective: Accurate and fast vessel segmentation from liver slices remain challenging and 

important tasks for clinicians. The algorithms from the literature are slow and less accurate. We pro- 

pose fast parallel gradient based seeded region growing for vessel segmentation. Seeded region growing 

is tedious when the inter connectivity between the elements is unavoidable. Parallelizing region grow- 

ing algorithms are essential towards achieving real time performance for the overall process of accurate 

vessel segmentation. 

Methods: The parallel implementation of seeded region growing for vessel segmentation is iterative and 

hence time consuming process. Seeded region growing is implemented as kernel termination and re- 

launch on GPU due to its iterative mechanism. The iterative or recursive process in region growing is 

time consuming due to intermediate memory transfers between CPU and GPU. We propose persistent 

and grid-stride loop based parallel approach for region growing on GPU. We analyze static region of in- 

terest of tiles on GPU for the acceleration of seeded region growing. 

Results: We aim fast parallel gradient based seeded region growing for vessel segmentation from CT liver 

slices. The proposed parallel approach is 1.9x faster compared to the state-of-the-art. 

Conclusion: We discuss gradient based seeded region growing and its parallel implementation on GPU. 

The proposed parallel seeded region growing is fast compared to kernel termination and relaunch and 

accurate in comparison to Chan-Vese and Snake model for vessel segmentation. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In medical imaging, vessel segmentation from liver slices is

ne of the challenging tasks. Seeded region growing (SRG) is a

idely used approach for semi automatic vessel segmentation

1,2] . Delibasis et. al. [3] have proposed a tool based on a modi-

ed version of SRG algorithm, combined with a priori knowledge

f the required shape. SRG starts with a set of pixels called seeds

nd grows a uniform, connected region from each seed. Key steps

o SRG are to define seed(s) and a classifying criterion that relies

n the image properties and user interaction [4] . SRG starts from a

eed and finds the similar neighboring points based on the thresh-

ld criteria using 4 or 8 connectivity. Region is grown if the thresh-
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ld criteria is satisfied. Similar neighbors are new seed points for

he next iteration. This process is repeated until the region can not

e grown further. In practice, it demands high computational cost

o the large amount of dependent data to be processed in SRG es-

ecially in the medical image analysis and still requires efficient

olutions [5] . 

SRG is an iterative process. SRG is invoked continuously until

egion can not be grown further. Iterative process in SRG, when

mplemented on GPU requires terminating kernel and relaunch-

ng from CPU (Kernel Termination and Relaunch (KTRL)) and data

ransfers between CPU and GPU [1,4] . So our main objective is to

educe these data transfers using different inter block GPU syn-

hronization (IBS) methods resulting in an efficient parallel imple-

entation of SRG. IBS provides flexibility to move all the computa-

ions on GPU by providing visibility to updated intermediate data

ithout any intervention from CPU. 

https://doi.org/10.1016/j.cmpb.2020.105430
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2020.105430&domain=pdf
mailto:el2sasan@uco.es
https://doi.org/10.1016/j.cmpb.2020.105430
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Table 1 

List of abbreviations with full forms. 

List Full Forms 

SRG Seeded Region Growing 

GPU Graphics Processing Unit 

CPU Central Processing Unit 

RoI Region of Interest 

KTRL Kernel Termination and Relaunch 

IBS Inter Block GPU Synchronization 

CT Computed Tomography 

PT Persistent Threads 

SM Streaming Multiprocessor 

CUDA Compute Unified Device Architecture 

DS Dice Score 
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In this paper, we propose persistent, grid-stride loop and IBS

based GPU approach for SRG to avoid intermediate memory trans-

fers between CPU and GPU. This also reduces processing over un-

necessary image voxels providing significant speedup. Persistent

thread block (PT) approach is basically dependent on number of

active thread blocks and grid-stride loop becomes essential when

the number of threads in the grid are not enough to process the

image voxels independently [6,7] . 

We implement parallel image gradient using grid-stride loop

and propose gradient and shared memory based fast parallel SRG

implemented entirely on GPU without any intermediate transfers

between CPU and GPU. This is inspired by parallel processing on

static region of interest (RoI) of tiles on GPU. We compare the pro-

posed persistent based parallel SRG with KTRL for accurate vessel

segmentation. The gradient based fast parallel SRG for 2D vessel

segmentation is 1.9 × faster compared to the state-of-the-art. 

The rest of the paper is structured as follows. Section 2 briefs

relevant works and state-of-the-art with respect to SRG.

Section 3 explains GPU approaches (KTRL and Static) for SRG

implementation using persistence and grid-stride loop. The appli-

cation of parallel SRG to vessel segmentation is discussed in the

Section 4 . Performance results and comparison of persistent and

grid-stride loop based parallel SRG for vessel segmentation are

mentioned in the Section 5 . Section 6 concludes summarizing the

main conclusions of this paper and indicating future directions.

List of abbreviations with explanations are mentioned in Table 1 . 

2. Background and motivation 

There are many works done on image segmentation recently

which are based on snake based model [8] , gradient vector flow

[9,10] , and level set based Chan-Vese model [11] . Scientists have

explored the snake model for segmentation. Snakes are defined

as a set of points around a contour [8] . But the problem with

the snake model is that the contour never sees the strong edges

that are far away and the snake gets hung up due to many small

noises in the image [8] . Hence researchers came up with the so-

lution called gradient vector flow (GVF). In GVF, instead of using

image gradient, a new vector field is created over the image plane

[9,10] . Cost of GVF includes smoothness and edge map but it re-

quires keeping track of the number of points and point distribu-

tion. Hence researchers came up with another solution called as

level sets based Chan-Vese model for image segmentation [11] . In

the absence of strong edges, a region based formulation for image

segmentation is proposed by Chan-Vese model. Chan-Vese model

for active contours is a powerful and flexible method which is able

to segment many types of images. But amongst all, SRG is the sim-

plest algorithm and plays a vital role in medical image segmenta-

tion [1,12] . 

Smistad et. al. [13,14] have discussed parallel SRG for image seg-

mentation. The reference implementation is shown in Fig. 1 . Medi-
al image dataset is cropped before processing. Then the CPU allo-

ates the memory equivalent to the cropped size to copy the data

o the cropped image on the GPU. Further SRG is performed for im-

ge segmentation. This is the simplistic representation of the work

y Smistad et. al. [14] . We have not considered pre-processing

tage in this work assuming the images are pre-processed. Smistad

t. al. [14] have proposed non persistent thread (non-PT) approach

or SRG based vessel segmentation. 

Smistad et al. [4] have proposed parallel region growing with

ouble buffering algorithm based on the parallel breadth first

earch algorithm by Harish and Narayanan [15] . They have sug-

ested a dynamic queue for SRG and mentioned that changing the

umber of threads (due to border expansion of the region) typ-

cally involves restarting the kernel, and this requires reading all

he values from global memory again. But they have not recom-

ended probable solution for this problem. Smistad et al. [14] have

resented a data parallel version of the SRG based Inverse Gradi-

nt Flow Tracking Segmentation algorithm using KTRL. Zhang et al.

16] have implemented bidirectional region growing where they

ave used a dynamic queue (stack). Jiang et al. [17] have proposed

mproved branch based region growing vessel segmentation algo-

ithm using stack. 

GPU based implementation of SRG needs a dynamic queue

stack). CPUs provide hardware support for stacks but GPUs do not

7] . Any queuing system has a large number of pieces of work

o do and a fixed number of workers corresponding to the fixed

umber of computing units. Pieces are then assigned dynamically

o the workers. The problem is deciding the maximum number of

ieces of work in the queuing system. If decided, persistent blocks

terate through these pieces of work in the queuing system. 

GPU implementation of a stack requires continuous changes in

emory allocations which in turn requires iterative GPU kernel in-

ocation from CPU in other words kernel termination and relaunch

s discussed in the algorithms IVM backtracking and work stealing

hase by Pessoa et al. [18] . Task-parallel run-time system, called

REES, that is designed for high performance on CPU/GPU plat-

orms by Hechtman et al. [19] have shown the invocation of GPU

ernels from CPU iteratively for updating task mask stack (TMS)

n TREES execution. The loop involved while implementing data

ow through the stream kernels of the rendering system (involv-

ng stack) on GPU controlled by CPU (that is KTRL) is proposed by

rnst et al. [20] . 

Nevertheless, there is an alternate GPU implementation of

ueuing system (stack) using dynamic kernel launching. Chen et.

l. [7] have proposed free launch based dynamic kernel launches

hrough thread reuse technique [7] . This technique requires no

ardware extensions, immediately deployable on existing GPUs. By

urning subkernel launch into a programming feature independent

f hardware support, free launch provides alternate approach for

ubkernel launch which can be used beneficially on GPUs. 

KTRL includes terminating a GPU kernel and invoking it from

he CPU if the region can be grown further [4,14] . GPU kernel SRG

s called from CPU. Region grows from a seed based on the thresh-

ld criteria. SRG kernel is terminated and relaunched from CPU if

egion is not grown completely. This process continues until re-

ion can not be grown further. The process involves transfer of

ata to and fro from CPU and GPU. In KTRL, SRG kernel operates

n each voxel of whole image data in all the iterations. It includes

edundant memory transfers and unnecessary computations over

omplete image. Hence the main contributions of this paper are

he implementation of persistence based approaches to improve

he performance of SRG by reducing unwanted computations and

voiding intermediate memory transfers between CPU and GPU.

emory on the GPU is limited and may not be enough for process-

ng large medical datasets. However, most medical datasets contain

 lot of data that is not part of the RoI. 



N. Satpute, R. Naseem and R. Palomar et al. / Computer Methods and Programs in Biomedicine 192 (2020) 105430 3 

Fig. 1. Reference approach derived from Smistad et. al. [14] 
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Fig. 2. GPU implementations of seeded region growing (SRG). 
The process of KTRL which involves iterative calling of the ker-

el is not efficient when implemented on GPU. Hence, as an opti-

ized solution to KTRL, we propose persistent and grid-stride loop

ased GPU approaches. These approaches are based on processing

ver static RoI of tiles and dynamic RoI of tiles. We discuss the

urther details in the upcoming sections. 

. Parallel SRG 

GPU is a grid of block of threads. Thread is the smallest com-

utational unit mapped on the cores and block of threads are

apped on the streaming multiprocessors (SMs). Each SM can oc-

upy more than one block. The threads from independent blocks

an access data via shared memory in the SM [21] . In order

o communicate valid data between the blocks, these persistent

locks need to be synchronized via IBS through device memory.

ersistence implies maximum number thread blocks that can be

ctive at the time of computation depending upon the GPU re-

ources available [6,22] . 

We use PT and shared memory based approaches for SRG im-

lementations. Shared memory and grid-stride loop based SRG re-

uces total memory transfers and computations. Grid-stride is in-

pired when the grid is not large enough to occupy all the data el-

ments [23,24] . Rather than assuming that the thread grid is large

nough to cover the entire image elements, the kernel loops over

he image one grid-size at a time. The stride of the loop is the to-

al number of threads on the grid [23] . These threads (or block of

hreads) iterate over the image until the process of SRG terminates.

For each thread in parallel on GPU, SRG starts from the seed

hread and finds similar neighbours surrounding it Region is grown

y making similar neighbouring elements as new seeds. The pro-

ess of SRG is repeated until similar neighbours can not be found.

ormally SRG can be implemented on the GPU as a recursive or

terative kernel calling (KTRL) as shown in Fig. 2 a. Kernel calling

nvolves invocation of a grid of block of threads. The blocks are ex-

cuted on streaming multiprocessors and threads are executed on

ores. Park et el. [25] and Smistad et al. [4] have given brief intro-

uction about CUDA (Compute Unified Device Architecture) archi-

ecture and GPU computing. They have detailed the information on

rid, blocks, threads and memory hierarchy of CUDA architecture. 

SRG can be recursive or iterative process. Recursive kernel call-

ng can not utilize GPU cores efficiently due to hardware limita-
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Fig. 3. SRG using persistence and grid-stride loop through complete image. 
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tions [26] . Iterative GPU kernel call from CPU is costlier due to

memory transfers between CPU and GPU and it involves all the

image elements to be considered in each step of SRG. GPU imple-

mentation of SRG using KTRL is shown in the Fig. 2 a. It shows that,

the kernel SRG is called on GPU continuously from the host CPU

until the region can not be grown further. It starts from the seed,

finds similar neighbours and grows the region. This process contin-

ues until the region can not be grown further. The process of the

KTRL causes unnecessary image elements to be part of computa-

tions and intermediate memory transfers between CPU and GPU. 

Hence in order to avoid these problems, we propose grid-stride

loop through complete image based GPU approach as shown in

the Fig. 2 b. SRG starts from the seed and the control goes to GPU.

The SRG kernel is launched if the region is not grown completely.

IBS is needed in order to transfer valid data in between the active

thread blocks. The number of active thread blocks on SMs are lim-

ited due to resource constraints. These maximum number of active

blocks are persistent blocks [6,21,22] . The looping i.e. grid-stride

loop terminate when the region can not be grown further and con-

trol returns to the host CPU as shown in the Fig. 2 b. We have

discussed KTRL based GPU approach for SRG implementation and

its disadvantages. Now, we are going to analyze PT based GPU ap-

proaches for high performance SRG implementation. Proposed ap-

proaches exploit parallelism using persistence and IBS as detailed

in the static and dynamic approaches. 

3.1. Static approach 

In the proposed approach, we apply grid-stride loop through

static RoI (complete image) using persistence and IBS [6,22] . The

complete liver image is mapped on the GPU as grid of block of

threads as shown in the Fig. 3 b. CPU invokes SRG kernel on GPU.

Persistent blocks iterate through complete image and grow region

from the seed in each and every iteration on GPU. This iteration

of persistent blocks over the tiles of the image and the grid-stride

loop based SRG is shown in Fig. 2 b. Steps of SRG in Figs. 3 c–f show

the grown region of the liver. SRG kernel terminates when the re-

gion is grown completely. We copy the data from the device mem-

ory to the shared memory. This data is shared by all the threads

inside the blocks. This is necessary to share the neighbouring el-

ements between different voxels of the image. For each parallel

thread in the block, if seed is found and is not the boundary el-

ement of the block, we calculate similar neighbouring elements.
egion is grown by making similar neighbouring elements as new

eeds. 

There are four persistent blocks shown in Fig. 3 . These four per-

istent blocks are iterated through liver elements. Tiles with the

ame color are iterated by same persistent block. In KTRL, these

iles are processed by the thread blocks randomly. Grid-stride loop

y persistent blocks is applied on the tiles over complete liver im-

ge (Step 1 in Fig. 3 c). Region grows around the seed containing

imilar elements. IBS is applied to communicate valid data in be-

ween the blocks for the next step of SRG as shown in Fig. 2 b. 

Persistent blocks iterate over the liver image and the region is

rown again in step 2 as shown in Fig. 3 d. IBS is applied and valid

ata is communicated in between the blocks so that the region

an be grown further as shown in Fig. 3 e and f. After step 4 in

ig. 3 f, SRG stops as region can not be grown further. Each step

ontain many iterations where region starts growing when persis-

ent blocks iterate through tiles of the image. This iterative process

ontinues until region can not be grown further. Code snapshot of

he complete process is provided in the Algorithm 1 . 

Algorithm 1: Grid-stride loop through complete image. 

1: unfinished=1; 

2: while unfinished==1 do 

3: unfinished=0; 

4: for int i=blockIdx.x;i < = 

width/ (blockDim.x − 2) ;i=i+gridDim.x do 

5: for int j=blockIdx.y;j < = 

height/ (blockDim.y − 2) ;j=j+gridDim.y do 

6: for int k=blockIdx.z;k < = 

depth/ (blockDim.z − 2) ;k=k+gridDim.z do 

7: Region_Growing(arguments, unfinished); 

8: end for 

9: end for 

10: end for 

11: Inter_Block_GPU_Sync(); 

12: end while 
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Algorithm 2: Parallel image gradient using grid-stride loop. 

1: voxel.x = blockIdx.x * blockDim.x + threadIdx.x; 

2: voxel.y = blockIdx.y * blockDim.y + threadIdx.y; 

3: stridex = blockDim.x * gridDim.x; 

4: stridey = blockDim.y * gridDim.y; 

5: for int k=voxel.x; k < rows ; k=k+stridex do 

6: for int l=voxel.y; l < cols ; l=l+stridey do 

7: candidate.x = k + 1; candidate.y = l + 1; 

8: check if neighbour candidate is within image dimensions; 

9: gx = 0.5*(data[candidate.x*cols + l] - data[k*cols + l]); 

10: gy = 0.5*(data[k*cols + candidate.y] - data[k*cols + l]); 

11: g = sqrt(gx*gx + gy*gy); 

12: data_g[k*cols + l]=g; 

13: if( max _ g < g) atomicMax(&max_g, g); 

14: if( min _ g > g) atomicMin(&min_g, g); 

15: end for 

16: end for 

4
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Global variable “unfinished” is 1 if region has to be grown fur-

her else it is 0. Persistent blocks in x, y and z directions iter-

te through complete image. Two is subtracted from block dimen-

ions to avoid computations around boundary voxels (from left

nd right in each dimensions) from shared memory as region can

ot be grown further in the block. After each step of SRG, when

he processing on complete image is done then all the persistent

locks are globally synchronized via “Inter_Block_GPU_Sync()” bar-

ier. This ensures that valid data is communicated for the next

tep of SRG. This barrier can be Atomic(), Quasi(), LockFree() or

an be implemented using NVIDIA CUDA API Cooperative-groups

22,27,28] . We use quasi based IBS because of its efficicient imple-

entation [27] . 

The difference between static and dynamic approach by Nitin

t. al. [1] can be explained in terms of static and dynamic RoI of

iles. In static approach, RoI remains constant and SRG happens

ithin the constant RoI until the region can not be grown fur-

her. Whereas in dynamic approach, SRG starts within the initial

oI. RoI increases and includes more elements uniformly in all the

irections for the next step of SRG. SRG takes place, RoI increases

nd the region is grown further. Hence RoI changes in each step

f SRG until the region can not be grown further in a dynamic ap-

roach. In the next section, we present 2D vessel segmentation as

n application to static RoI based SRG. 

. Application to 2D vessel segmentation 

The 2D segmentation algorithm is inspired by the gradient

ased SRG algorithm developed by Rai and Nair [29] . We proposed

he fast parallel SRG based segmentation algorithm on GPU for ves-

el segmentation. We discuss the two important modules i.e. image

radient and SRG for the fast parallel 2D segmentation of vessels

rom CT liver images. 

.1. Parallel image gradient 

Rai and Nair [29] have presented homogeneity criterion selec-

ion and its impact on the quality of segmentation using SRG.

n general, the threshold criteria include object contrast, region

oundary, homogeneity of the region, intensities values and tex-

ure features like shape and color. But we include cost functions

ainly based on intensity values and their gradient direction and

agnitude. 

The cost function exploits certain features of the image around

he seed. Gradient based cost function requires gradient of the im-

ge, largest gradient magnitude (max_g) and minimum gradient

min_g) present in the image. The cost functions are: 

ost1 = g/ (k ∗ max _ g) 0 < cost1 < 1 (1)

ost2 = ( max _ g − g) / ( max _ g − min _ g) 0 < cost2 < 1 (2)

here g is gradient magnitude of the pixel under consideration

nd k is the constant parameter which controls the region growth.

he pixel under consideration is added in the growing region if

t matches with the seed elements i.e. cost functions specified by

qs. (1) and (2) are satisfied otherwise it is excluded from consid-

ration. 

We propose grid-stride loop based parallel image gradient

ethod in Algorithm 2 . For each pixel in parallel, we calculate

ts gradient magnitude ( g ) with respect to neighbouring element.

orizontal and vertical gradient components are given by gx and

y . The magnitude of maximum and minimum gradients are up-

ated simultaneously. The gradient of the image is desired input

or SRG based segmentation along with the seed. This is discussed

n the next section. 
.2. Parallel vessel segmentation 

We propose fast parallel vessel segmentation as shown in Fig. 4 .

he algorithm is inspired from gradient based segmentation algo-

ithm by Rai and Nair [29] . Fig. 4 shows parallel implementation of

essel segmentation where the user selects seed(s). These seed(s)

long with the image are transferred to the GPU. Device kernel cal-

ulates the image gradient in parallel as discussed in the earlier

ection. The IBS is necessary to reflect the updated image gradi-

nts in the device memory. 

Further we apply SRG algorithm. The cost functions based on

radient are shown in Eqs. (1) and (2) . For each pixel in parallel,

he pixel under consideration invokes SRG kernel if it satisfies the

ost functions. The seeds are updated after IBS and the gradient

ased cost functions are verified again for new pixels. This process

ontinues until no new seeds are formed i.e. no new pixels are

dded to the growing region. 

The kernel is terminated and the control returns to the CPU

hen the region is grown completely. The segmented image is

ransferred to the CPU. The process of segmentation stops. This

PU implementation avoids iterative call of SRG kernel from CPU.

e use gradient and persistent based parallel SRG for vessel seg-

entation. 

. Performance evaluation 

We propose persistent and grid-stride based GPU approaches

or fast parallel 2D vessel segmentation. The performance results

re obtained from KTRL and proposed persistent based GPU ap-

roach. We compare proposed approaches with KTRL. We use In-

el(R) Core(TM) i7-7700HQ CPU @ 2.80GHz RAM 24 GB, NVIDIA

PU 1050 (RAM 4GB), OpenCL 1.2 (ref. [30] ) and CUDA Toolkit 10.1

or the implementation. 

.1. Liver dataset and ground truth 

Liver data for the research work has been acquired from The

ntervention Center, University of Oslo, Norway [31] . The ground

ruths for vessel segmentation are provided by the clinician. The

odality used is Computed tomography (CT). For the ground truth,

mages are pre-processed through locally developed application

ith 3D Slicer to enhance vessels [32] . In some cases, the same

pplication is used for vessel segmentation and separation of por-

al and hepatic vessels although another possibility is to use active

ontour tool using ITK-SNAP and manual correction [1,31] . Table 2

hows information about images of different sizes including total
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Fig. 4. Proposed parallel vessel segmentation. 

Table 2 

Liver dataset with vessels. 

Volume # Total # of Slices Image Size ( w × h ) # of Slices with Vessels 

10504 59 460 × 306 7 

18152 139 512 × 512 5 

23186 87 405 × 346 6 

28059 59 462 × 321 6 
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number of vessel slices used for experimentation from a particular

volume. 

5.2. Parallel 2D vessel segmentation 

We propose persistent and grid-stride based GPU approaches

for fast parallel 2D vessel segmentation. Variations in vessel seg-

mentation with parameter ‘ k ’ using parallel SRG is shown in Fig. 5 .

Input to parallel SRG is CT liver slice as shown in Fig. 5 a. Gradient

of input CT image and the ground truth for the segmentation are

shown in Fig. 5 b and c respectively. Dice similarity coefficient (DS)

and Precision [33,34] are used to assess the quality of vessel seg-

mentation. Dice similarity coefficient measures the similarity be-

tween ground truth and the segmented output. If they are identical

(i.e. they contain the same elements), the coefficient is equal to 1.0,

while if they have no elements in common, it is equal to 0.0. Oth-

erwise it is somewhere in between 0 to 1. Precision describes the

number of positive detections with respect to the ground truth. Of

all of the elements that are segmented in a given liver vessel im-

age, the number of these elements actually had a matching ground

truth annotation can be called as precision. 

We show the two segmented vessels with change in parameter

k i.e. 0.04, 0.05, and 0.06. The first segmented vessel as shown in

Fig. 5 d, e, f is accurate at 0.04 with high dice score i.e. DS = 0 . 77 .

Similarly we show the segmentation of second vessel from the

same slice. The variations in the quality segmentation due to k

are shown in Fig. 5 g, h, i. The more accurate segmentation is ob-

tained at 0.05 as the dice similarity coefficient value is higher i.e.

DS = 0 . 60 . 

Further we show the quality of segmentation on another CT

Slice as shown in Fig. 6 a and calculate the gradient ( Fig. 6 b) of the

input CT image. GPU computes parallel SRG using gradient based

thresholding criteria giving more accurate results with high dice

score at k = 0 . 05 for two vessels inside the CT slice as shown in

Fig. 6 c and d. The ground truth for the segmentation is shown in

Fig. 6 e. We analyze that the vessels are more accurately segmented
ue to better value of dice similarity coefficient when the parame-

er k takes the value 0.05 as shown in Fig. 6 . 

The speedup obtained by proposed parallel static approach over

TRL on first two CT liver slices are shown in the Table 3 . The

aximum speedup for vessel segmentation by proposed parallel

tatic SRG is 1.67 × in comparison to KTRL on the first liver slice.

ut the average speedup obtained by proposed parallel static ap-

roach for all the vessels (in 6 slices tested) is 1.9 × compared to

TRL. We evaluate the speedup of the vessel segmentation when

he vessel segmentation is more accurate with better Dice score

alue ( Fig. 5 ). 

Further we analyze the effect of parallel SRG on different slices

or multiple vessel segmentation using multiple seeds as shown in

igs. 7–10 . Segmentation of the long vessel as shown in Fig. 8 d is

lightly extended compared to the ground truth shown in Fig. 8 e. It

an be seen from input CT image and gradient image ( Figs. 8 a and

), long vessel has extension which is not shown in the ground

ruth. We show the thick vessel segmentation in Figs. 7 d, 9 c, 8 c

nd thin vessel segmentation in Figs. 7 c, 8 c and d. The results of

egmentation in terms of Dice Score and Precision are provided in

able 4 . The highest and lowest value of precision for these slices

re 0.94 and 0.79 respectively. This implies the number of posi-

ive detections in the segmented images are higher. It is possible to

se multiple seeds for the same vessel in the proposed vessel seg-

entation approach. We have the flexibility to provide two seeds

n the same vessel and then the proposed approach can create a

urve or a line of initial seeds (if needed) as an input for SRG. It is

seful in order to increase the quality of vessel segmentation. 

There are many works done on image segmentation recently

hich are based on snake based model [8] , gradient vector flow

9,10] , and level set based Chan-Vese model [11] . We validate the

erformance on 72 vessels from 24 vessel slices obtained from 4

ifferent volumes in Table 5 . Table shows the comparison of the

essel segmentation accuracy between three different models i.e.

nake model [8] , Chan-Vese [11] , and proposed SRG in terms of

ice score and precision. Average dice score value and precision

btained by proposed SRG is outperforming the Chan-Vese and

nake based vessel segmentation. 

Our proposed parallel implementations of SRG is not only fast

ut also accurate for vessel segmentation. The accuracy of the seg-

entation depends on the parameter ‘ k ’. Clinicians get the flex-

bility to decide which segmentation is more accurate. The pro-

ess takes very less time (few ms). Hence this reduces the over-

ll time for segmentation for various values of parameter ‘ k ’ if the
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Fig. 5. Variations in fast parallel vessel segmentation with constant parameter ‘ k ’ using parallel SRG on first liver slice. 

Fig. 6. Vessel segmentation (for k = 0 . 05 ) using parallel SRG on second liver slice. 

Table 3 

Time and speedup for vessel segmentation. 

Data → Vessel Segmentation 

GPU Approaches → Metrics ↓ KTRL Static (Speedup) 

Time in ms for kernel SRG - 1st Slice ( k = 0 . 05 ) 1st vessel 5.7 3.4 (1.67 × ) 

Time in ms for kernel SRG - 1st Slice ( k = 0 . 05 ) 2nd vessel 2.1 1.5 (1.4 × ) 

Time in ms for kernel SRG - 2nd Slice ( k = 0 . 05 ) 1st vessel 1.5 1 (1.5 × ) 

Time in ms for kernel SRG - 2nd Slice ( k = 0 . 05 ) 2nd vessel 3.5 2.4 (1.45 × ) 

Fig. 7. Fast parallel vessel segmentation using parallel SRG on 3rd liver slice using multiple seeds ( n ). 
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Fig. 8. Fast parallel vessel segmentation using parallel SRG on 4th liver slice using multiple seeds ( n ). 

Fig. 9. Fast parallel vessel segmentation using parallel SRG on 5th liver slice using multiple seeds ( n ). 

Fig. 10. Fast parallel vessel segmentation using parallel SRG on 6th liver slice using multiple seeds ( n ). 

Table 4 

Quality of vessel segmentation in terms of dice score and precision for Figs. 5–10 . 

Sr. No. Ground Truth Figure Segmented Image Figure Value of ‘ k ’ Dice Score Precision 

1 Fig. 5 c Fig. 5 d 0.04 0.77 0.86 

2 Fig. 5 e 0.05 0.73 0.94 

3 Fig. 5 f 0.06 0.67 0.94 

4 Fig. 5 c Fig. 5 g 0.04 0.54 0.86 

5 Fig. 5 h 0.05 0.60 0.83 

6 Fig. 5 i 0.06 0.37 0.86 

7 Fig. 6 e Fig. 6 c 0.05 0.88 0.86 

8 Fig. 6 d 0.05 0.89 0.85 

9 Fig. 7 e Fig. 7 c 0.05 0.70 0.91 

10 Fig. 7 d 0.05 0.88 0.91 

11 Fig. 8 e Fig. 8 c 0.05 0.71 0.79 

12 Fig. 8 d 0.05 0.72 0.90 

13 Fig. 9 e Fig. 9 c 0.05 0.67 0.82 

14 Fig. 9 d 0.05 0.88 0.88 

15 Fig. 10 e Fig. 10 c 0.05 0.89 0.94 

16 Fig. 10 d 0.05 0.67 0.91 

Table 5 

Segmentation accuracy comparison for 4 volumes, 24 vessel slices and 72 vessels. 

Volume # 

Image Size 

( w × h ) 

# of Vessel 

Slices 

Total # of 

Vessels 

Chan-Vese [11] Snake model [8] Proposed SRG 

Average 

Dice 

Average 

Precision 

Average 

Dice 

Average 

Precision 

Average 

Dice 

Average 

Precision 

10504 460 × 306 7 21 0.78 0.82 0.77 0.81 0.85 0.83 

18152 512 × 512 5 15 0.75 0.85 0.78 0.83 0.82 0.87 

23186 405 × 346 6 18 0.77 0.83 0.81 0.82 0.84 0.86 

28059 462 × 321 6 18 0.72 0.81 0.76 0.78 0.81 0.84 

 

 

 

 

 

t  

v  

f  

o  

s

clinician wants to have more accuracy. The advantage of k is, by

adjusting the value of k from the threshold criteria, clinicians have

the flexibility to fine tune the accuracy of the vessel segmenta-

tion. But, vessels vary in shapes, sizes, texture features etc not

only in different CT slices but also in the same CT slice. Even if
he authors propose k = 0 . 05 provides better accuracy for the pro-

ided CT images, sometimes finding the same value of k for dif-

erent vessels in the same CT slice becomes difficult. The range

f k lies between 0.03 to 0.12 for the better accuracy of vessel

egmentation. 
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.3. Discussion 

In this paper, we propose persistence and grid-stride loop based

RG implementation. In order to obtain significant speedup, we

eed to exploit parallelism by using persistence and IBS. It involves

hange in the large body of SRG algorithm. We want algorithms

hat require as less synchronization as possible. In general if algo-

ithm requires IBS, it is probably not going to be particularly fast.

he fastest algorithms on GPUs are ones that fit nicely into the

PU programming model, where blocks are independent from each

ther and do not require synchronization [35] . 

But the problem arises when iterative calling of the kernel

an not be avoided. It incurs memory transfers from CPU to GPU

hen KTRL is used for global synchronizations. Hence it has to go

hrough synchronizations as the next step of SRG which is depen-

ent on the current step. Terminating a kernel and relaunching in-

urs data transfers from CPU to GPU and vice versa. It is time con-

uming. 

If we use IBS method along with persistence, then we can map

hole algorithm on GPU with synchronization. Control comes back

o CPU only if the kernel task is over. CPU launches a kernel on

PU, GPU executes it and final results are copied to CPU. No in-

ermediate data communication occurs in the proposed approach

unlikely in KTRL). 

. Conclusion 

In this paper, we discuss SRG based vessel segmentation and

ts parallel implementation on GPU. We propose persistence and

rid-stride loop based GPU approach for SRG providing significant

peedup. Normally recursion/iterative calling of a kernel is gener-

lly a bad idea on GPUs. We use persistence and grid-stride ap-

roach as an alternate implementation for KTRL. We compare pro-

osed GPU optimization strategy for SRG implementation. The pro-

osed persistent and gradient based parallel SRG for 2D vessel seg-

entation is accurate with high dice scores and 1.9 × faster com-

ared to the KTRL. 
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