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a b s t r a c t 

Background and objective: Medical image segmentation plays a vital role in medical image analysis. There 

are many algorithms developed for medical image segmentation which are based on edge or region char- 

acteristics. These are dependent on the quality of the image. The contrast of a CT or MRI image plays an 

important role in identifying region of interest i.e. lesion(s). In order to enhance the contrast of image, 

clinicians generally use manual histogram adjustment technique which is based on 1D histogram specifi- 

cation. This is time consuming and results in poor distribution of pixels over the image. Cross modality 

based contrast enhancement is 2D histogram specification technique. This is robust and provides a more 

uniform distribution of pixels over CT image by exploiting the inner structure information from MRI im- 

age. This helps in increasing the sensitivity and accuracy of lesion segmentation from enhanced CT image. 

The sequential implementation of cross modality based contrast enhancement is slow. Hence we propose 

GPU acceleration of cross modality based contrast enhancement for tumor segmentation. 

Methods: The aim of this study is fast parallel cross modality based contrast enhancement for CT liver 

images. This includes pairwise 2D histogram, histogram equalization and histogram matching. The se- 

quential implementation of the cross modality based contrast enhancement is computationally expensive 

and hence time consuming. We propose persistence and grid-stride loop based fast parallel contrast en- 

hancement for CT liver images. We use enhanced CT liver image for the lesion or tumor segmentation. 

We implement the fast parallel gradient based dynamic seeded region growing for lesion segmentation. 

Results: The proposed parallel approach is 104.416 ( ± 5.166) times faster compared to the sequential 

implementation and increases the sensitivity and specificity of tumor segmentation. 

Conclusion: The cross modality approach is inspired by 2D histogram specification which incorporates 

spatial information existing in both guidance and input images for remapping the input image intensity 

values. The cross modality based liver contrast enhancement improves the quality of tumor segmentation. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Computed tomography (CT) images of abdomen often possess

ow contrast [1,2] . Radiologists often manually delineate lesions

uring segmentation of medical images, which can be difficult,

ime-consuming and prone to observer variability [3] . Some seg-

entation algorithms do not perform well when applied on the

T images and are time consuming [4,5] . However, their perfor-
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ance can be made better once the CT images are preprocessed

6,7] . Therefore, preprocessed CT images help in refining the le-

ions. One possible preprocessing step is image enhancement for

he better visualization of tumors in undertaking surgical proce-

ures [8–10] . 

Efficient preprocessing can certainly help to attain accurate seg-

entation of the critical structures in medical images [7,11] . High

ensitivity and specificity indicates the improved quality of the

egmentation [5,12] . The liver images obtained from the CT scans

re sometimes noisy, low in contrast and contains high amounts of

etails. We consider contrast as the important feature. If the image

s high contrast then it becomes easier to identify and segment the

https://doi.org/10.1016/j.cmpb.2019.105285
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
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object of interest [2,13] . In our case, lesion is necessary to be seg-

mented. 

There are many methods proposed to improve the contrast of

the image. Histogram equalization, histogram specification and his-

togram matching are some of the ways to improve the contrast in

the image as discussed by [1,14,15] . We apply 2D histogram match-

ing where CT liver is the target image and the magnetic resonance

imaging (MRI) liver slice is the guided image [16,17] . Cross modal-

ity based contrast enhancement exploits 2D histogram matching

for liver enhancement. Once the image is enhanced then the task

is to segment tumor from enhanced image. Seeded region growing

for tumor segmentation is an easy and effective process. But the

task of cross modality based liver enhancement is computationally

expensive and time consuming [18] . Hence it becomes necessary to

use GPU for real time performance of liver contrast enhancement

and tumor segmentation. We propose accelerated cross modality

guided liver enhancement scheme in this paper and demonstrate

that our technique improves tumor segmentation on enhanced im-

age. 

The aim of this study is cross modality based liver enhance-

ment to improve the contrast of CT liver image for tumor segmen-

tation. We propose parallel implementation of liver contrast en-

hancement. This is accomplished by 2D histogram matching using

CT and MRI liver images. We propose dynamic region of interest

(RoI) based seeded region growing (SRG) for tumor segmentation

from enhanced CT image. The overall average speedup obtained by

parallel implementation is 104.416 ± 5.166 times compared to

the sequential CPU implementation of the contrast enhancement

and tumor segmentation. The enhanced liver image improves the

sensitivity and specificity of the lesion segmentation. This is the

first work targeted towards the high performance multi-modality

guided liver enhancement for tumor segmentation to the best of

our knowledge. 

The rest of the paper is organized as follows. Section 2 briefs

the related works, background and motivation with respect to the

liver image enhancement. Section 3 explains the proposed method-

ology for liver contrast enhancement and its parallel implementa-

tion on the GPU. Further, we discuss dynamic RoI based fast par-

allel SRG for tumor segmentation in Section 4 . Performance re-

sults and comparison of contrast enhancement and seeded region

growing for tumor segmentation are mentioned in the Section 5 .

Section 6 concludes summarizing the main results related to the

cross modality based contrast enhancement and tumor segmenta-

tion. 

2. Background and motivation 

Segmentation of lesions is a challenging problem in medical im-

ages because of the similar intensity values of structures of inter-

est and the nearby regions in image. Research works are targeting

various methods for the segmentation [19–21] . The results of the

segmentation are subsequently used in patient specific model for

diagnostics, surgery planning and navigation. One such approach

using gradient based SRG has been presented to segment the aorta

and rib bones in thorax images by Rai and Nair [21] . Inspired by

this idea, we propose parallel SRG to segment tumors from CT liver

images. 

Image enhancement is regarded as a precursor to the accurate

segmentation. CT scans are commonly used due to the availability

and quicker imaging time compared to MRI. CT scans often suffer

from low contrast which limit their utility [1,2] . In this work, we

show through our experiments that corresponding MR image can

be employed to improve the contrast of CT. The idea to enhance

an image using another cross modal image has been witnessed in

the literature for natural images [6–9] . The motivation to use cross

modality guided image enhancement is to use the additional in-
ormation contained in the other image having similar contents in

ifferent imaging times or position but better contrast or minimal

oise. Ultimately, the details in the enhanced image can be im-

roved from the perceptual perspective. In the context of liver im-

ges, tumors can be easily seen in the enhanced CT image. 

In this regard, the contrast of photographs was improved using

he corresponding near infra red images [6,14] . Histogram specifi-

ation in combination with wavelet domain processing was used

n this work. Yan et. al proposed a variational approach using

nisotropic filter to eliminate noise in color images using infrared

mages [9] . The authors calculated cross correlation between input

mages and then used joint filtering for denoising in another ap-

roach [7,11] . 

Deep learning is applied to multimodal image denoising re-

ently [8] . A deep learning method consisting of three convolu-

ional neural networks has been applied to denoise natural im-

ges. Various deep learning based approaches for CT denoising

ave been presented in the last few years, however, they do not in-

orporate the multimodality guidance and use the CT image alone

or supervised learning [16,17,22] . Histogram based methods are

seful to enhance the global contrast of image [14] , however, they

ntroduce bad artifacts in the processed images. Since it does not

onsider the neighborhood of the pixels while remapping, it does

ot necessarily gives the desired contrast [2,14,23] . Two dimen-

ional histogram specification is presented recently to improve the

D histogram specification [18] . It uses 2D cumulative distribution

unction of the input and target images for remapping intensity

alues in the original image. 

We apply same notion to CT liver images by applying 2D his-

ogram matching based cross modality approach for liver contrast

nhancement in the following section. 

. Methodology: liver contrast enhancement 

We aim to improve the contrast of CT liver image consider-

ng MRI liver image as the guidance image to increase the qual-

ty of lesion segmentation. The methodology includes 2D contrast

nhancement, gradient of enhanced image and segment the lesion

sing gradient based SRG. The parallel approach for liver enhance-

ent and lesion segmentation makes the process faster in order to

chieve real time implementation. In this section, we discuss paral-

el implementation of the cross modality based liver enhancement.

The flow of proposed GPU implementation of cross modality

ased contrast enhancement is shown in Fig. 1 . We load CT and

RI images of liver on CPU and transfer it to the GPU. The first

tep of contrast enhancement of CT liver image is 2D (or pairwise)

istogram calculation (Hist_2d). We calculate parallel 2D histogram

f both CT (hist_CT) and MRI (hist_MRI) images. A 2D histogram

s a plot of pixel and its neighbouring element which allows us

o discover, and show, the underlying 2D frequency distribution

shape) of image. This shows how often each set of values (pixel

nd neighbour) in the image occurs. Instead of just considering

he individual pixel values, it considers every possible pixel pair

n the input and guidance image and calculate 2D CDF accordingly

18,24] . 

Further the calculation of cumulative distributive function

CDF_2d) of CT (CDF_CT) and MRI (CDF_MRI) images on GPU cre-

tes the input for the next step i.e. histogram equalization. 2D CDF

s a function that describes the probability of a possible pixel pair

n the input and guidance image. This helps in finding most fre-

uent pairwise intensity values for histogram equalization [18] . 

Then we perform parallel histogram equalization (HE_2d). This

tep spreads out the most frequent pairwise intensity values in-

reasing the global contrast of image. Hence it improves lower con-

rast areas to gain a higher contrast [18,24] . 
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Fig. 1. GPU implementation of the cross modality based contrast enhancement. 
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Fig. 2. 2D Histogram. 
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The mapping (Map_2d) of histogram equalization onto the CT

mage gives the enhanced image. It maps the modified intensity

alues obtained from 2D histogram equalization to the correspond-

ng pixels [18] . 

Inter block GPU synchronization (IBS) makes sure the updated

alues are sent to the next modules in GPU computing blocks.

hese parallel implementations of sub-modules of contrast en-

ancement are explained in following sections. 

.1. 2D Histogram 

In this section, we discuss the 2D histogram implementation

n GPU as the first step of the contrast enhancement of CT liver

mage. The histogram length (HL) is 256. We launch HLxHL par-

llel threads and find the histogram of neighboring elements in

airs. Hence it is called as pairwise histogram. Pairwise histogram

s stored in an array of size HLxHL. 

For each thread in parallel, it takes the pixel (x,y) and neigh-

ouring pixel (x+1,y) value. This represents one of the indices in

he range of (0-HLxHL-1) in histogram array given by variable

emp as shown in Algorithm 1 . We increment corresponding value

Algorithm 1: 2D Histogram of CT and MRI Image (Hist_2d). 

1: HL=256 and launch HL x HL parallel threads 

2: ti and tj can be any thread id between 0–255 

3: while x < width_of_image do 

4: while y < height_of_image do 

5: if ti == I[ x ][ y ] and t j == I[ x + 1][ y ] then 

6: temp=ti*HL+tj; 

7: atomicAdd(histogram[temp], 1); 

8: end if 

9: end while 

10: end while 

n the index position in histogram array as shown in Fig. 2 . This

unction hist_2d for CT and MRI images gives hist_CT and hist_MRI

istograms respectively. These 2D histograms are the input to the

umulative distributive function which is the next step of contrast

nhancement. 

.2. Cumulative distributive function (CDF) 

In this step of contrast enhancement, we calculate CDF of 2D

istograms of CT and MRI liver images. The maximum number of
istogram pairs can be (w −1) ×(h) where w and h are width and

eight of the image. 

We launch HL × HL threads in parallel as shown in Algorithm 2 .

Each thread calculates its CDF from respective 2D histogram val-

Algorithm 2: Calculate CDF of CT and MRI Image (CDF_2d). 

1: count= (width-1)*height i.e. maximum number of pairs 

2: HL=256 and launch HL x HL parallel threads 

3: ti and tj can be any thread id between 0–255 

4: temp=ti*HL+tj; 

5: while temp < HL*HL do 

6: for int j=0; j < = temp; j++ do 

7: cdf [ temp]+ = histogram [ j] /count;
8: end for 

9: end while 

es. These CDF values for CT (CDF_CT) and MRI (CDF_MRI) images

re the input to the next step of contrast enhancement which is

D histogram equalization. 

.3. 2D Histogram equalization (HE_2d) 

2D Histogram Equalization technique improves the contrast of

mage. It spreads out the most frequent intensity values. This

ethod increases the global contrast of image. This improves the

ower contrast areas to gain higher contrast. The pseudocode for

D histogram equalization is shown in the Algorithm 3 . We launch
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Algorithm 3: Calculate 2D Histogram Equalization (HE_2d). 

1: HL=256 and launch HL x HL parallel threads 

2: ti and tj can be any thread id between 0–255 

3: index=ti*HL+tj; 

4: for k=0; k < HL; k++ do 

5: for l=0; l < HL; l++ do 

6: temp8=k*HL+l; 

7: temp = cdf1[index]-cdf2[temp8] 

8: if temp is minimum then 

9: x = k 

10: end if 

11: if multiple minimum values found then 

12: temp2 = absolute((ti-k) + (tj-l)) 

13: if temp2 is minimum then 

14: x = k 

15: end if 

16: if multiple minimum temp2 are found then 

17: temp3 = absolute((ti-tj) - (k-l)) 

18: if temp3 is maximum then 

19: x = k 

20: end if 

21: end if 

22: end if 

23: end for 

24: end for 

25: HE[index]=x; 
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HLxHL threads in parallel. Each thread calculates the corresponding

histogram equalization by taking the minimum difference between

two CDFs (cdf1 for CDF_CT and cdf2 for CDF_MRI). It takes into

the account the first minimum euclidean distance value between

the indices when multiple minimum difference in CDFs are found.

Again when multiple solutions are available, it further computes

and find out the equalized value saved in array HE. This array is

ready to get mapped for enhanced image which is the final step of

contrast enhancement. 

3.4. Mapping 

The mapping of 2D histogram equalization is essential for ob-

taining enhanced CT image as an output. We launch wxh threads

where w and h are width and height of the image respectively.

This is reverse process of 2D histogram calculation as explained

in the psuedocode given by the Algorithm 4 . The index value is

Algorithm 4: Mapping for Enhanced Image (Map_2d). 

1: launch (width)*(height) parallel threads 

2: HL=256 

3: tw can be any thread id between 0 to width-1 

4: th can be any thread id between 0 to height-1 

5: temp1 = I[ tw ][ th ] ;
6: temp2 = I[ tw + 1][ th ] ;
7: index = temp1 ∗ HL + temp2 ;
8: I[ tw ][ th ] = HE [ index ] ; //E nhancedImage 

generated from the neighbouring pixel values of the CT image. The

pixel value in the CT image is changed by the corresponding value

in the location (index) given by the 2D histogram equalization ar-

ray. When all the threads are finished processing corresponding

pixels, the enhanced image is sent back to the CPU. 
. Application to the tumor segmentation 

Seeded Region Growing is an easy approach to segment the var-

ous objects in an image. The result of the region growing relies

ainly on the initial seed(s) and the criteria defined to end re-

ursive or iterative region growing process [4,19,25,26] . The paral-

el implementation of SRG based tumor segmentation is shown in

ig. 3 . 

We load CT and MRI images and transfer it to the GPU. GPU

erforms cross modality based contrast enhancement and stores

he enhanced CT image in GPU memory. The control comes back to

he CPU. This is essential for the selection of seed(s) and to change

he number of persistent blocks. These persistent blocks (i.e. num-

er of available computing resources on the GPU) differ depending

n the application. The next task is tumor segmentation. GPU com-

utes the gradient of enhanced CT liver image. The gradient of en-

anced liver image is communicated through IBS to the next mod-

le for tumor segmentation. We apply SRG on the gradient of en-

anced liver image. Region grows and new seeds are formed from

nitial seed(s) based on the threshold criteria. This process is itera-

ive until the threshold criteria is satisfied. The process stops when

ew seed(s) can not be formed and region can not be grown fur-

her. 

In this work, we use threshold criteria defined by the homo-

eneity of region and region aggregation considering the pixel val-

es and their gradient direction and magnitude. The criteria is

efined via a cost function that uses few features of the image

round seed. Value of the cost function is compared with homo-

eneity criteria specified to check if the value is smaller than 1.

he pixel becomes part of the region if there is a match; other-

ise it is excluded from the region. The cost functions for thresh-

ld criteria are given by Rai and Nair [21] . They select homogeneity

riterion using gradient based cost function which are dependent

pon object contrast, texture features like shape and color, inten-

ities values, gradient direction and magnitude. The cost function

xploits features of image around the seed. 

We apply parallel gradient based SRG algorithm on both en-

anced images and original CT liver images. We propose dynamic

oI based parallel SRG. 

.1. Dynamic SRG 

Dynamic SRG as the name suggests, it increases the region of

nterest (RoI) in each iteration of SRG. The initial RoI is decided by

umber of active computing blocks or persistent blocks that can

e launched on GPU. This represents the phenomenon of persis-

ence. In order to communicate valid data in between the blocks,

nter block GPU synchronization (IBS) is necessary. Persistence and

BS provide flexibility to exploit parallelism using grid-stride loop

hrough constant increase in RoI. One grid-stride is number of ac-

ive computing threads that can be launched on GPU device. 

Gupta et al. [27] have explored persistent thread based GPU

rogramming. The idea behind this is once the SRG kernel

aunched from CPU, the control returns from GPU when the region

s grown completely. Intermediate data transfers between CPU and

PU are avoided in this approach. SRG kernel on GPU is launched

rom the host CPU. Region is grown on GPU. Image elements are

pdated and communicated to the blocks via IBS. The region is

rown again on GPU, if new similar neighbouring elements are

ound. This process continues until no similar neighbouring ele-

ents are available. The kernel terminates when the region can

ot be grown further and control returns to the CPU. Redundant

ata computations and communications are optimized on GPU us-

ng proposed approach. This process is explained in the Fig. 4 . 

There are four persistent blocks processing grid of blocks using

rid-stride loop as shown in Fig. 4 a. We map 3D liver on grid of
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Fig. 3. GPU implementation of SRG based tumor segmentation. 

Fig. 4. SRG using dynamic RoI of tiles. 
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locks as shown in Fig. 4 b and initialize RoI of tiles around the

eed as shown in Fig. 4 c. Persistent blocks operate within RoI. First

tep of SRG takes place. Region is grown and RoI is incremented

n all directions. This process makes necessary neighbouring vox-

ls available for the second step of SRG as shown in Fig. 4 d. New

eighbouring voxels perform same function and RoI is incremented

gain. This flow is repeated until region can not be grown further

s shown in Fig. 4 e and f. This approach reduces compute and

emory operations resulting in the increased performance. It is

eeded to ensure that the increase in RoI lies within the image

imensions. 

Complete process is defined in the Algorithm 5 . RoI should be

nitialized in such a way that all threads are busy performing SRG.

ariable “blockgrow” is essential to check the increase the RoI. In-

rease RoI of tiles if value of “blockgrow” is ”1”, otherwise stop

RG as region is grown completely. This variable “blockgrow” along

ith the variable “unfinished” are updated in the SRG segmenta-

ion step. Lower and upper values of RoI (in x , y , and z directions)

re calculated when “blockgrow” is “1”. It has to be made sure that
he RoI should not increase beyond image dimensions in the suc-

essive steps of SRG. 

Persistent blocks operate inside the RoI. Kernel SRG is called for

he voxels within the RoI. IBS makes sure only updated values are

ommunicated to the persistent blocks in each step of SRG. IBS can

e atomic, quasi, lock free or based on cooperative groups from

VIDIA toolkit CUDA 10.1 [28–30] . We use quasi IBS for our ap-

roach due to its efficient implementation [28] . 

. Results and discussion 

We discuss performance analysis of proposed parallel cross

odality based liver enhancement for tumor segmentation. The

nhanced liver images and segmented tumors are shown and the

erformance analysis of tumor segmentation is discussed based on

uality assessment. We use Intel(R) Core(TM) i7-7700HQ CPU @

.80GHz RAM 24 GB, NVIDIA GPU GeForce GTX 1050 (RAM 4GB),

nd CUDA Toolkit 10.1 to compare the proposed parallel GPU ap-

roach with CPU implementation. 
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Algorithm 5: Grid-stride Loop through Dynamic RoI. 

1: blockgrow=1; 

2: while blockgrow==1 do 

3: blockgrow=0; 

4: unfinished=1; 

5: Increase RoI of Tiles; 

6: To Increase RoI of Tiles 

w=w+1; h=h+1; d=d+1; 

7: Ensure RoI within image dimensions; 

8: while unfinished==1 do 

9: unfinished=0; 

10: for int i=blockIdx.x;i < = w/blockDim.x ;i+=gridDim.x do 

11: for int j=blockIdx.y;j < = h/blockDim.y ;j+=gridDim.y do 

12: for int k=blockIdx.z;k < = d/blockDim.z;k+=gridDim.z 

do 

13: Region_Growing(arguments, unfinished, 

blockgrow); 

14: end for 

15: end for 

16: end for 

17: Inter_Block_GPU_Sync(); 

18: end while 

19: end while 

 

 

 

 

 

 

 

 

 

Fig. 5. CT, MR and enhanced CT images. 
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5.1. Liver enhancement 

We propose fast parallel cross modality based contrast en-

hancement. 2D histogram of CT image is mapped to 2D histogram

of guidance or MR image to get a better contrast image. 

Fig. 5 shows input CT, MRI and enhanced CT liver images with-

out any tumors. Fig. 6 shows enhanced CT liver images with tu-

mors. Figures show the contrast is enhanced significantly to ob-

serve tumors clearly. Enhanced image is further processed for tu-

mor segmentation using SRG. Average time taken by NVIDIA GPU

GeForce GTX 1050 is 1.976 s ± 0.43 s providing the average

speedup of 104.416 ± 5.166 times over CPU implementation
Fig. 6. CT, MR and enhanced CT
208.082s ± 55.799s) for tumor segmentation using 2D cross

odality based contrast enhancement. 

In order to enhance the contrast in CT images, we investigate

uality improvements by fusing the information that is available in

ne modality (e.g. liver inner structures in MRI) to guide the adap-

ive enhancement in other image modality (e.g. CT in our case).

his provides better control over the enhancement and is more ef-

ective and efficient than the state of the art technique used by

linicians. Clinicians generally use manual histogram adjustment

echnique based on 1D histogram specification on CT or MRI scans.

his process does not provide efficient distribution of pixels for

ontrast enhancement of CT or MRI image. There are more chances

f artifacts in 1D enhancement as it results in random histogram

nd is also a time consuming process. 

However, 2D histogram specification incorporates spatial infor-

ation while calculating 2D CDFs of both the guidance and input
 images showing tumors. 
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Fig. 7. CT, MR and enhanced CT (Enh) with GLCM plots. 
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f  
mages and for remapping the input image intensity values. Instead

f just considering the individual pixel values, it considers every

ossible pixel pair in the input and guidance image and calculate

D CDF accordingly. Looking at the Gray Level Co-Occurrence Ma-

rix (GLCM) plots in Fig. 7 , it can be observed that the distribu-

ion of pixel pairs in GLCM plot of the resulting enhanced image

 Fig. 7 f) is expanded but concentrated along the diagonal in com-

arison to GLCM plots of CT and MR image ( Fig. 7 d and e), which

eans it does not introduce artificial artifacts unlike 1D histogram

pecification or histogram equalization. 

We provide the histogram comparison of images using 1D and

roposed 2D technique as shown in Fig. 8 . The proposed 2D cross

odality approach provides a proper distribution of pixel elements

sing guided MRI compared to 1D approach applied on CT or MRI

mage. 1D approach introduces unpleasant effects in the enhanced

mage. The histogram of enhanced CT using cross modality ap-

roach is similar to guided MRI image. There are more chances of

rtifacts in enhanced image using 1D approach as clinicians use

anual adjustment which may result in any random histogram of

he enhanced image. In the next section, we discuss the impact of

ross modality based contrast enhancement for tumor segmenta-

ion. 

.2. Tumor segmentation 

We propose fast parallel gradient based dynamic SRG for tumor

egmentation. Our proposed parallel SRG is implemented on GPU.

t does not involve transfer of data between CPU and GPU. The data

or the research work have been acquired from The Intervention

enter, University of Oslo, Norway [31] . The ground truths for tu-

or segmentation are provided by the clinician. We present the

isual comparison of tumor segmentation on both enhanced and

riginal CT liver images. The results in Figs. 9–11 show the tumor

egmentation from original and enhanced liver images. Fig. 9 a1

epresents the original CT liver image. The gradient of input CT
mage is shown in Fig. 9 a2. The tumor segmentation (Seg) and

he ground truth (GT) for the original CT liver slice are shown in

ig. 9 a3 and a4 respectively. 

We enhance original CT liver image ( Fig. 9 a1) using cross

odality based liver enhancement and the enhanced image

Enh_CT) is shown in Fig. 9 b3. The tumor segmentation is per-

ormed on the enhanced CT liver image ( Fig. 9 b3) and segmented

umor from enhanced CT image is shown in Fig. 9 b5. The quality

f tumor segmentation is validated in our clinical validation sec-

ion using Table 1 . Tumor segmentation for other CT liver slices are

hown in Figs. 10 , and 11 and the segmentation quality is improved

hen the image is enhanced. Hence the cross modality based con-

rast enhancement on CT liver images improves the quality of tu-

or segmentation and it is faster. The proposed fast parallel liver

nhancement based tumor segmentation is 104.416 ± 5.166 times

aster compared to the sequential implementation. We include

able 2 showing experimental evaluation on 10 different datasets

including 107 tumor slices) obtained from The Intervention Cen-

re, Oslo University Hospital, Oslo, Norway. It can be observed from

he table that the cross modality based liver enhancement helps in

mproving the sensitivity, specificity (denoted by ‘Sensi’ and ‘Speci’

espectively in Table 2 ) and accuracy of tumor segmentation and

PU implementation of proposed approach is around 100 times

aster compared to the CPU implementation. P value from ANOVA

analysis of variance) for the ten datasets is 3 . 31 × 10 −14 which is

ess than 0.05. We reject the null hypothesis and conclude that not

ll means are equal which confirms the means are statistically sig-

ificant for the concerned experiments. 

.3. Clinical validation 

Tables 1 and 2 show the analysis of tumor segmentation before

nd after enhancement of CT liver images. Table 1 includes 5 liver

lices with tumors from different datasets and Table 2 shows per-

ormance evaluation on 10 different datasets including 107 tumor
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Fig. 8. Comparison between 2D cross modality and 1D histogram approach. 

Fig. 9. Tumor segmentation from original and enhanced CT image 1. 
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Fig. 10. Tumor segmentation original and enhanced CT image 2. 

Fig. 11. Tumor segmentation from original and enhanced CT image 3. 

Table 1 

Tumor segmentation analysis on five slices. 

Tumor Without any Enhancement With Enhancement Time-Enh + SRG(s) Speedup 

Slice # Sensitivity, Specificity Accuracy Sensitivity, Specificity Accuracy CPU GPU 

1 0.55 0.99899 0.82 0.99906 272.07 2.48 109.706 

2 0.38 0.99918 0.81 0.99898 265.98 2.41 110.365 

3 0.47 0.99769 0.58 0.9968 167.81 1.68 99.887 

4 0.83 0.87091 0.50 0.99765 162.03 1.61 100.64 

5 0.47 0.99786 0.74 0.99823 172.52 1.70 101.482 

Average 0.54 0.973 0.69 0.998 208.082s 1.976s 104.416 

Std. Dev. 0.173 0.057 0.143 0.001 55.799s 0.43s 5.166 

s  

fi  

t  

t  

o  

a  

i

5

 

t  

n  

T  

s  
lices. We chose sensitivity (true positive rate or recall) and speci-

city (true negative rate) as performance metrics for the evalua-

ion of tumor segmentation [5,12] . It is observed that, the sensi-

ivity and specificity are increased when the accuracy is nearly 1

n the enhanced image. This implies that when the tumor is actu-

lly present, then it is predicted more accurately when the image

s enhanced. 
.4. Discussion 

In this paper, we propose fast parallel cross modality based con-

rast enhancement for CT liver images. Further GPU performs dy-

amic RoI based tumor segmentation on enhanced CT liver image.

hese fast parallel implementations are based on persistence, grid-

tride loop and IBS. The process of cross modality based contrast
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Table 2 

Tumor segmentation analysis on ten different datasets. 

Dataset # 

Size of each 

Slice (wxh) 

Total # of 

Slices 

# of Tumor 

Slices Without any Enh (Average) With Enh - Average (Avg.) Enh + SRG Avg. Time (s) Avg. Speedup 

Sensi, Speci Model accuracy Sensi, Speci Model accuracy CPU GPU 

1 406 × 299 73 10 0.28 0.99132 0.36 0.99517 141.07 1.41 100.054 

2 512 × 512 139 7 0.41 0.99213 0.52 0.99796 252.22 2.29 109.901 

3 381 × 304 67 10 0.48 0.99412 0.65 0.99689 131.89 1.32 99.916 

4 405 × 346 87 8 0.39 0.99325 0.47 0.99717 158.56 1.56 101.641 

5 462 × 321 59 14 0.32 0.99173 0.50 0.99823 167.01 1.63 102.460 

6 380 × 512 58 9 0.49 0.99112 0.64 0.99421 202.02 1.89 106.89 

7 443 × 437 63 6 0.51 0.99201 0.71 0.99501 193.17 1.83 105.55 

8 361 × 249 63 7 0.37 0.99312 0.57 0.99427 126.60 1.26 100.47 

9 483 × 386 80 6 0.31 0.99415 0.59 0.99612 185.78 1.80 103.21 

10 456 × 400 216 30 0.42 0.99178 0.62 0.99324 189.93 1.82 104.35 
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enhancement is computationally expensive and hence time con-

suming. This involves 2D histogram calculation, equalization and

histogram matching [22] . They require several light weight tasks.

The performance on GPU is improved compared to the CPU by di-

viding the tasks on several active threads. 

The second part of the process is tumor segmentation. We pro-

pose gradient and dynamic RoI based SRG inspired from the works

of Rai and Nair [21] . Initially, the process needs small part of the

region to be accessed instead of whole image (as implemented

previously on GPU). As soon as region grows, RoI should be in-

creased to access more neighbouring elements. GPU implementa-

tion of SRG involves kernel termination and relaunch continuously

from CPU. This is time consuming. We avoid this by using persis-

tence and grid-stride loop and obtain the significant speedup i.e.

104.416 ± 5.166 times compared to the sequential implementa-

tion of liver enhancement and tumor segmentation. 

6. Conclusion 

In this paper, we discuss cross modality based contrast en-

hancement for CT liver images, application to tumor segmenta-

tion and their fast parallel implementation on GPU. Cross modality

based liver enhancement includes CT liver image as an input and

MRI liver image as a guided image. Pairwise 2D histogram imple-

mentation and histogram equalization spreads the intensity values

across the image producing contrast enhanced CT image. We pro-

pose persistence and grid-stride loop based fast parallel implemen-

tation on GPU. The enhanced image then used for segmentation

of tumors from enhanced CT liver images effectively. We propose

gradient and dynamic RoI based seeded region growing for tumor

segmentation. The parallel approach for liver enhancement and tu-

mor segmentation is 104.416 ± 5.166 times faster compared to

the CPU implementation. 
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