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A B S T R A C T

Accurate and fast liver segmentation remains a challenging and important task for clinicians. Segmentation
algorithms are slow and inaccurate due to noise and low quality images in computed tomography (CT)
abdominal scans. Chan–Vese is an active contour based powerful and flexible method for image segmentation
due to superior noise robustness. However, it is quite slow due to time-consuming partial differential equations,
especially for large medical datasets. This can pose a problem for a real-time implementation of liver
segmentation and hence, an efficient parallel implementation is highly desirable. Another important aspect
is the contrast of CT liver images. Liver slices are sometimes very low in contrast which reduces the overall
quality of liver segmentation. Hence, we implement cross-modality guided liver contrast enhancement as a pre-
processing step to liver segmentation. GPU implementation of Chan–Vese improves average speedup by 99.811
(± 7.65) times and 14.647 (± 1.155) times with and without enhancement respectively in comparison with
the CPU. Average dice, sensitivity and accuracy of liver segmentation are 0.656, 0.816 and 0.822 respectively
on the original liver images and 0.877, 0.964 and 0.956 respectively on the enhanced liver images improving
the overall quality of liver segmentation.

1. Introduction

Image segmentation is a popular research topic in medical imaging;
as it has a number of applications, such as tissue detection [1], segmen-
tation [2–5], reconstruction [6], registration [6,7], etc. There are many
methods proposed for image segmentation, such as region growing [8],
thresholding [9], gradient approach [3], contour methods [10,11],
etc. They can be classified into edge or region based image segmen-
tation methods. These methods can be further categorized based on
histogram, spatial information of the image, convergence of active con-
tours, etc [4,12]. The active contour models are essential when the edge
of the region of interest in the image is indistinct and diffused [4,13].
The computed tomography (CT) scans sometimes provide poor quality
images with indistinguishable liver boundaries which complicates the
task of liver segmentation for clinicians for the treatment of patients.

The Chan–Vese algorithm is developed on active contour models
using a level set approach [4,14]. This operates on the initial contours,
average intensity values inside and outside the curve and optimizes
the energy based on the level set approach [15,16]. The algorithm
works on the principle of the energy minimization problem which
relies on calculus and partial differential equations [17,18]. It is one
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of the most influential and effective methods in order to optimize
the Mumford–Shah function which includes energy terms defined in
image and contour space [12,19,20]. Chan–Vese is flexible and robust
at segmenting the CT liver image, which is difficult to segment using
classical segmentation techniques [10,21].

The study proposes a high performance Chan–Vese approach for
liver segmentation by avoiding intermediate memory transfers between
the CPU and GPU. However, the Chan–Vese approach alone is not
sufficient for accurate liver segmentation as it can result in many false
positives, lowering the sensitivity and accuracy [22,23] and degrading
the quality of liver segmentation. Hence, we employ an enhancement
module before the Chan–Vese approach for segmentation. This module
provides the cross-modality guided liver contrast enhancement. This
works on the target and guided image. We consider the CT liver image
as the target image and the image from magnetic resonance (MR)
imaging as the guided image. The cross-modality approach generates
the histogram of target CT scan similar to guided MR image [24,
25]. The proposed parallel approach results in fast and accurate liver
segmentation.

Our goal is to develop a fast parallel Chan–Vese approach for liver
segmentation with and without liver contrast enhancement. The GPU
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implementation is faster compared to the CPU and the liver contrast en-
hancement improves the quality of liver segmentation by reducing the
false positives and increasing the sensitivity, dice score and accuracy
of the segmentation. The average dice score, sensitivity and accuracy
of the liver segmentation are 0.877 ± 0.036, 0.964 ± 0.037 and
0.956 ± 0.022 respectively after liver contrast enhancement improving
the quality of segmentation. GPU implementation of the Chan–Vese seg-
mentation algorithm improves the average speedup by 99.811 ± 7.65
times and 14.647 ± 1.155 times with and without enhancement in
comparison to the CPU.

The rest of the paper is structured as follows. Section 2 briefs the
background and motivation with respect to the Chan–Vese approach
for image segmentation. Section 3 explains the flow of the Chan–
Vese approach and its parallel implementation on the GPU both with
and without liver contrast enhancement. Performance evaluation based
on the quality of liver segmentation and the speedup is analyzed in
Section 4. Section 5 summarizes the results and main conclusions of
the paper.

2. Background and motivation

Image segmentation plays a vital role in medical image analysis.
There are many methods developed for image segmentation [8]. Other
researchers have investigated active contour models for image segmen-
tation [4,14,17,18]. We explain the background and motivation behind
active contours and the benefits of Chan–Vese approach for image
segmentation.

Scientists have explored the snake model for segmentation. Snakes
are defined as a set of points around a contour [26–28]. The contour
can be initialized inside the object forcing the snake to expand outside.
This is the Balloon Force algorithm [29,30]. The energy of the snake
based model which provides a high quality segmentation can be defined
as follows. Total energy of curve C

𝐸(𝐶) = 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝐶) + 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝐶) (1)

Eq. (1) expresses the total energy where the curve repeatedly
evolves to minimize energy E. 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝐶) and 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝐶) depend on
the shape of the snake curve and image intensities respectively.

𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝐶) = ∫

1

0
𝑤1‖𝑐

′(𝑠)‖2 +𝑤2‖𝑐
′′(𝑠)‖2𝑑𝑠 (2)

Eq. (2) expresses the internal energy. Low c’ means the curve is not too
stretchy and it keeps the points on the curve together. Low c’’ implies
the curve is not too bendy i.e. it is smooth and keeps the points on the
curve from oscillating.

𝐹 (𝑠) = −[(
𝜕𝐼(𝑋(𝑠), 𝑌 (𝑠))

𝜕𝑋
)2 + (

𝜕𝐼(𝑋(𝑠), 𝑌 (𝑠))
𝜕𝑌

)2] (3)

𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝐶) = ∫

1

0
−‖∇𝐼(𝑐(𝑠))‖2𝑑𝑠 = ∫

1

0
𝐹 (𝑠)𝑑𝑠 (4)

If there is no edge then ∇𝐼(𝑐(𝑠)) = 0 and 𝐹 (𝑠) = 0 (from Eqs. (3)
and (4)). If there is a thick edge then ‖∇𝐼(𝑐(𝑠))‖ is large and 𝐹 (𝑠) is
more negative. It implies that the 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝐶) is lowered. The aim is
to minimize E(C) from Eq. (1). However, the contour never sees the
distant strong edges and the snake gets hung up due to many small
noises in the image [26,27,29,30]. Hence researchers devised a solution
called a gradient vector flow (GVF). Instead of using an image gradient,
they created a new vector field over the image plane [31,32]. The
mathematical representation of GVF [33,34] is given by the following
equations.

𝐺𝑉 𝐹1 = [(
𝜕𝑉𝑥
𝜕𝑥

)2 + (
𝜕𝑉𝑥
𝜕𝑦

)2 + (
𝜕𝑉𝑦
𝜕𝑥

)2 + (
𝜕𝑉𝑦
𝜕𝑦

)2] (5)

𝐺𝑉 𝐹2 = ‖∇𝑒‖2‖𝑉 − ∇𝑒‖2 (6)

𝑐𝑜𝑠𝑡_𝐺𝑉 𝐹 = ∬ 𝜇(𝐺𝑉 𝐹1) + 𝐺𝑉 𝐹2 𝑑𝑥𝑑𝑦 (7)

GVF has two components defining smoothness (GVF1 from Eq. (5))
and edge map (GVF2 from Eq. (6)) as shown in Eq. (7). If ∇𝑒 is
high then the gradient is also high and V follows the edge gradient
faithfully. If ∇𝑒 is low then the gradient is also low and V becomes
as smooth as possible. 𝜇 is a tuning parameter to define the scaling of
smoothness in comparison to the edge map. GVF2 from Eq. (6) defines
the characteristic of the image where ∇𝑒 is a magnitude of the edge
map and (𝑉 −∇𝑒) shows similarity between V and ∇𝑒. If the region has
a thick edge (high ∇𝑒) then (𝑉 −∇𝑒) should be low which implies V is
pushed towards ∇𝑒.

Nevertheless, there are problems with both the snake and GVF mod-
els [26,28,32]. They require the number of points and point distribution
to be monitored. Snakes as defined can never wrap around multiple
objects at once. They cannot determine the inner boundary of the
region of interest. Hence researchers devised another solution called
level sets [17,18,35]. The shape-intensity prior level set proposed by
Wang et al. [35] contains the atlases which are weighted in the selected
training datasets by calculating the similarities between the atlases and
the test image to dynamically generate a subject-specific probabilistic
atlas for the test image.

The idea of level sets is derived from fluid dynamics. Instead of
parameterizing the curve using a set of ordered points, discretize the
image plane (x,y) and define a function f(x,y). 𝑓 (𝑥, 𝑦) > 0 implies the
pixels are inside the curve and 𝑓 (𝑥, 𝑦) < 0 describes the pixels are
outside the curve [12,15].

In the absence of strong edges, we can use a region based for-
mulation which is a Chan–Vese approach for segmentation [4,12,20].

𝑆𝐷𝑖𝑛𝑠𝑖𝑑𝑒 = ∫𝑖𝑛𝑠𝑖𝑑𝑒
(𝐼(𝑥, 𝑦) − 𝜇𝑖𝑛𝑠𝑖𝑑𝑒)2𝑑𝑥𝑑𝑦 (8)

𝑆𝐷𝑖𝑛𝑠𝑖𝑑𝑒 from Eq. (8) denotes the standard deviation of pixels inside the
curve.

𝑆𝐷𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = ∫𝑜𝑢𝑡𝑠𝑖𝑑𝑒
(𝐼(𝑥, 𝑦) − 𝜇𝑜𝑢𝑡𝑠𝑖𝑑𝑒)2𝑑𝑥𝑑𝑦 (9)

𝑆𝐷𝑜𝑢𝑡𝑠𝑖𝑑𝑒 from Eq. (9) denotes the standard deviation of pixels outside
the curve.

𝑆𝐷𝑡𝑜𝑡𝑎𝑙 = 𝜆1 ∗ 𝑆𝐷𝑖𝑛𝑠𝑖𝑑𝑒 + 𝜆2 ∗ 𝑆𝐷𝑜𝑢𝑡𝑠𝑖𝑑𝑒 + 𝜆3 ∗ 𝐿𝐶 + 𝜆4 ∗ 𝐴𝑈𝐶 (10)

𝑆𝐷𝑡𝑜𝑡𝑎𝑙 from Eq. (10) represents the Chan–Vese algorithm where LC is
the length of the curve, AUC is the area under the curve and 𝜆1 >
0, 𝜆2 > 0, 𝜆3 ≥ 0, 𝜆4 ≥ 0 are fixed parameters [15,20]. The algorithm
maximizes the difference in standard deviations of pixel distributions
between inside and outside the curve.

The default value of 𝜆 is 0.1. It describes the relative weighting of
curve smoothness. However, after experimentation, the authors found
the following values (in Eq. (10)) suitable for convergence and accurate
liver segmentation. The weight parameter of the term inside the level
set is 𝜆1 = 0.2. The weight parameter of the term outside the level
set is 𝜆2 = 0.2. The weight parameter of the length term is 𝜆3 =
0.04 ∗ 𝑤𝑖𝑑𝑡ℎ(𝑖𝑚𝑎𝑔𝑒) ∗ ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑚𝑎𝑔𝑒) and 𝜆4 = 0.0002 ∗ 𝑤𝑖𝑑𝑡ℎ(𝑖𝑚𝑎𝑔𝑒) ∗
ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑚𝑎𝑔𝑒) is the weight parameter of the area term.

In the next section, we discuss the CPU and GPU implementation of
the Chan–Vese approach for liver segmentation.

3. Methodology

In this section, we discuss the proposed methodology based on the
Chan–Vese approach and the impact of cross-modality guided contrast
enhancement on liver segmentation. The sequential and parallel imple-
mentations of the Chan–Vese approach with and without liver contrast
enhancement are explained in the following sections.
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Fig. 1. CPU implementation of Chan–Vese.

3.1. CPU implementation of Chan–Vese

In this section, we discuss the flowchart for CPU implementation of
the Chan–Vese approach for liver segmentation. The flowchart in Fig. 1
represents the Chan–Vese approach for liver segmentation.

• Initialization: The aim of this step is to create a mask or the initial
contour in order to generate a signed distance function (SDF) [14,
20]. This consists of two regions i.e. the liver as the foreground
and the non-liver region as the background. The mask should be
similar to the liver area in order to increase the sensitivity of
segmentation and reduce the computation time.

• Stopping Criteria: This step detects if the process of liver seg-
mentation is complete or not. If the process is complete then the
segmented image is stored and the process of liver segmentation
stops, otherwise the model calculates the mean of the interior and
exterior regions with respect to the initial mask.

• Mean: This step includes the computation of the SDF as the
first step. This is computed from the initial mask on the liver
using Euclidean distance. In this work, we choose 𝜙 as an image
with real values in order to choose distances from the curve so
that the distance function (SDF) is positive inside the curve and
negative outside. However, the computation of the SDF is time-
consuming. Hence we apply a narrow band approach to reduce
the computation time by restricting the computation to a band of
grid points near the level set (or mask). The SDF helps to find the
average value of pixels inside and outside the curve [14,19].

• Force: The calculation of the average value of the pixels inside
and outside the curve is essential to compute the force from the
Chan–Vese energy Eq. (11).

𝐸 = 𝑆𝐷𝑖𝑛 + 𝑆𝐷𝑜𝑢𝑡

= ∫𝑖𝑛
(𝐼(𝑥, 𝑦) − 𝜇𝑖𝑛)2𝑑𝑥𝑑𝑦 + ∫𝑜𝑢𝑡

(𝐼(𝑥, 𝑦) − 𝜇𝑜𝑢𝑡)2𝑑𝑥𝑑𝑦 (11)

Force is computed from the image using the average value of the
pixels inside and outside the curve as shown in Eq. (12).

𝐹 = ∇𝐸 = (𝐼(𝑥, 𝑦) − 𝜇𝑖𝑛)2 + (𝐼(𝑥, 𝑦) − 𝜇𝑜𝑢𝑡)2 (12)

Then the curvature is calculated using the kappa equation [12,15]
and the central difference approximation scheme is applied to
approximate the derivatives of SDF with respect to x and y.

• Minimize Energy: The gradient descent algorithm helps to min-
imize the energy given by Eq. (11). The curve is updated by
the calculation of the SDF after a small time interval and is
approximated by the first-order Taylor expansion.

• Maintain CFL Condition: The Courant, Friedrichs, Lewy (CFL) [14,
15,19] condition is necessary for convergence while solving the

partial differential equations in order to maintain the accuracy of
the curve. The equation is given as

𝐶 = 𝑢𝛥𝑡∕𝛥𝑥 ≤ 𝐶𝑚𝑎𝑥 (13)

where C is the courant number, u is the dependent variable which
is a magnitude of the velocity, 𝛥𝑡 is the time interval and 𝛥𝑥
is the space interval. The value of Cmax is typically 1 for the
explicit methods. Eq. (13) is a one dimensional case of the CFL
condition. The courant number can be enlarged by increasing
the time interval or decreasing the space interval. The courant
number controls the stability and it is necessary to choose the
space and time intervals precisely.

• Evolve The Curve: We calculate the Sussman function [15] to
maintain the smoothness of the curve. Re-initialization of the
curve takes place and the process of Chan–Vese based segmen-
tation continues until the liver is segmented completely and the
curve cannot be evolved further.

3.2. GPU implementation of Chan–Vese

Our objective is a fast parallel implementation of the Chan–Vese
approach for liver segmentation. In this section, we discuss the GPU
implementation of the Chan–Vese approach. Chan–Vese is an iterative
algorithm. The flow of GPU implementation of Chan–Vese approach for
liver segmentation is shown in Fig. 2.

We load the liver image and send it to the GPU memory. The CPU
calls the Chan–Vese kernel on the GPU. Each thread on the GPU in
parallel performs the initialization of the curve. The stopping criteria
is checked on the device memory to ensure the process is finished or
not. If the process is finished then the control returns to the CPU storing
the segmented image and the process stops.

Each thread in parallel is responsible for the calculation of the av-
erage value of the pixels inside and outside the curve. Inter block GPU
synchronization (IBS) [36,37] between stages is essential and ensures
valid data is communicated between the blocks. Then the Chan–Vese
kernel on the GPU calculates the force based on the image pixels
and the curvature and the gradient descent algorithm to minimize the
energy given by Eq. (11). All the threads maintain the CFL condition
for convergence and calculate the Sussman function to maintain the
smoothness of the curve. The parallel threads reinitialize the curve and
the process of liver segmentation using Chan–Vese continues until the
curve cannot be evolved further. The process of segmentation stops and
control returns to the CPU if the stopping criteria is satisfied.

These blocks communicate via IBS and the intermediate kernel calls
are avoided using the proposed approach which helps to increase the
performance. The kernel invokes enough blocks of threads to compute
liver segmentation. The thread blocks on the GPU are the computa-
tional units launched in parallel to perform independent operations.
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Fig. 2. GPU implementation of Chan–Vese.

The maximum number of active blocks are called persistent blocks [3,
36]. However, the application may require more blocks compared to
the persistent blocks. We apply a grid-stride loop so that the persistent
blocks are iterated to perform the task of the remaining blocks [37,38].

Chan–Vese is a powerful approach for segmentation due to im-
proved noise robustness although the quality of liver segmentation is
questionable due to the low contrast of the liver images. Hence it is nec-
essary to assess the impact of contrast enhancement on liver segmenta-
tion. We employ cross-modality guided liver contrast enhancement as a
pre-processing step for liver segmentation. The parallel implementation
of liver segmentation with contrast enhancement is discussed in the
next section.

3.3. GPU implementation of Chan–Vese with enhancement

The Chan–Vese approach for liver segmentation results in false
positives. In order to reduce the number of false positives and increase
the sensitivity of liver segmentation, we enhance the CT liver image
using cross-modality guided contrast enhancement. The flow of liver
contrast enhancement and segmentation using Chan–Vese is shown in
Fig. 3.

We load CT and MR images and send them to the GPU. The
CPU invokes a single kernel on GPU for liver enhancement and seg-
mentation. Liver enhancement improves the contrast of the CT liver
image considering the MR image as the guidance image. The parallel
computing units on the GPU match the histogram of the CT image
with the guided MR image before performing segmentation. The liver
contrast enhancement consists of the following modules:

• 2D Histogram: The contrast enhancement module calculates the
2D histogram of both CT and MR images. A 2D histogram is a
plot of a pixels and neighboring pixels to discover the underlying
2D frequency distribution of the image. This involves calculating
the frequency that how often the neighboring pair of values in
an image occurs instead of just considering the individual pixel
values [25,39,40].

• 2D Cumulative Distributive Function (CDF): The 2D histograms
help to find the 2D CDFs of the CT and MR images for contrast
enhancement. 2D CDF calculates the probability of a possible
pixel pair in the CT and MR images [24,40].

• 2D Histogram Specification (HS): This is also called as histogram
equalization. HS extends the most frequent intensity values im-
proving the global contrast of the image [25,40].

• 2D Histogram Matching (HM): The process of histogram equaliza-
tion over the CT image provides the enhanced image by mapping
the modified intensity values obtained from the 2D histogram
equalization to the corresponding pixels [24,25,39].

The enhanced CT image obtained from 2D cross-modality is sent
to the Chan–Vese approach for segmentation. The GPU performs the
segmentation and the control returns to the CPU saving the segmented
liver image. This parallel Chan–Vese implementation is described in the
previous Section 3.2.

4. Performance evaluation

In this section, we analyze and compare the performance of the
Chan–Vese approach on CPU and GPU, the impact of enhancement
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Fig. 3. GPU implementation of Chan–Vese with enhancement.

on liver segmentation and the quality of liver segmentation using dice
score, sensitivity and accuracy. We use Intel(R) Core(TM) i7-7700HQ
CPU @ 2.80 GHz RAM 24 GB, NVIDIA GPU GeForce GTX 1050 (RAM
4 GB) and CUDA Toolkit 10.1 for the implementation and we evaluate
the performance of liver segmentation in the following section.

4.1. Dataset

Liver data for the research work has been acquired from The Inter-
vention Centre, University of Oslo, Norway [3,41]. The ground truths
for liver segmentation are provided by the clinician. Inter and intra
observer errors exist while creating the ground truths for the input
CT images. Intra observer error is when the same clinician creates
the ground truth for the input CT image in different time stamps.
Inter observer error is created when different clinicians create the
ground truth for the same input CT image. Errors depend upon the
registration of the input CT and MR images which are used for cross-
modality guided contrast enhancement. Errors may also be introduced
if clinicians use different registration techniques for the CT and MR
slices. In this work, a 3D slicer is used for the registration.

The CT and MR volumes are loaded into the 3D Slicer and; then
the region of interests (RoIs) are extracted from both volumes using
the ‘Surface Cut’ and ‘Mask Volume’ options available in the ‘Segment
Editor’ tool. The RoI can also be extracted using the ‘Threshold’ option
in the ‘Segment Editor’. The RoIs can be registered using ‘General
Registration’ by selecting the appropriate Degree of Freedom) and ‘Ini-
tialization Transform Mode’. Note that the registration results depend

Table 1
Liver dataset.

Volume # Total # of slices Image size (wxh) # of slices with Liver

28 059 59 462 × 321 6
23 186 87 405 × 346 6
18 152 139 512 × 512 5
10 504 59 460 × 306 7

on the organs whose CT and MR volumes are being registered. Liver
CT and MR images are quite challenging to register.

Table 1 shows information about images of different sizes including
the total number of liver slices used for the performance analysis
from a particular volume. We validate the performance on 24 liver
slices obtained from 4 different registered volumes. For ground truths,
images are pre-processed through locally developed applications with
a 3D Slicer. In some cases, the same application is used for liver
segmentation and separation of portal and hepatic vessels although
another possibility is to employ the active contour tool using ITK-SNAP
and manual correction [41].

4.2. Quality of liver segmentation

We discuss the Chan–Vese approach for liver segmentation and
the impact of cross-modality guided contrast enhancement on segmen-
tation. The segmented results using Chan–Vese on the original and
enhanced images are shown in Figs. 4, 5, and 6.
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Fig. 4. Liver segmentation from original and enhanced CT image 1.

Table 2
Liver segmentation quality analysis.

Liver Chan–Vese without enhancement Chan–Vese with enhancement

Slice # Dice Sensitivity Accuracy Dice Sensitivity Accuracy

1 0.504 0.831 0.719 0.904 0.979 0.969
2 0.533 0.669 0.748 0.895 0.961 0.966
3 0.762 0.882 0.896 0.894 0.988 0.967
4 0.759 0.868 0.890 0.879 0.991 0.961
5 0.721 0.829 0.858 0.815 0.901 0.917

Average 0.656 0.816 0.822 0.877 0.964 0.956
Std. Dev. 0.126 0.085 0.082 0.036 0.037 0.022

Figs. 4a, 5a, and 6a show the liver segmentation on original CT
liver slices and Figs. 4b, 5b, and 6b show the liver segmentation with
enhancement. We analyze the Chan–Vese based segmentation of the
original and enhanced images. Figs. 4a2 and 4b4 show the Chan–
Vese based liver segmentation of the original image (Fig. 4a1) and the

enhanced image (Fig. 4b3) respectively and the ground truth is shown
in Fig. 4a3 (or Figs. 4b5). Figs. 5a2 and 5b4 show liver segmentation
from the original (Fig. 5a1) and enhanced image (Fig. 5b3) respectively
with ground truth shown in Fig. 5a3 or 5b5. Similarly, Figs. 6a2 and
6b4 show liver segmentation from the original image (Fig. 6a1) and
enhanced image (Fig. 6b3) respectively with ground truth shown in
Fig. 6a3 or 6b5.

The input CT images and ground truths are the same for Figs. 4,
5, and 6. For example, the same input slices are shown in Figs. 4a1
and 4b1, 5a1 and 5b1, and 6a1 and 6b1. Identical ground truth images
are shown in Figs. 4a3 and 4b5, 5a3 and 5b5, and 6a3 and 6b5. CT
images (Figs. 4b1, 5b1, and 6b1) and MR images (Figs. 4b2, 5b2, and
6b2) are used to obtain the corresponding enhanced images (Figs. 4b3,
5b3 and 6b3) using cross-modality guided liver contrast enhancement.
We compare the segmented result with the ground truth. It can be
seen from the quality assessment of liver segmentation (Table 2) that
the segmented liver is more accurate when the contrast of the liver is
enhanced.
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Fig. 5. Liver segmentation original and enhanced CT image 2.

Table 2 shows the quality assessment parameters i.e. dice, sensi-
tivity and accuracy [22,23]. The dice measure indicates the region of
overlap. Sensitivity also called the true positive rate defines whether
the method is sensitive to the liver elements. Accuracy explains the
number of liver and non-liver elements segmented accurately. It can
be seen from Table 2 that the average dice, sensitivity and accu-
racy of the liver segmentation are 0.656 ± 0.126, 0.816 ± 0.085
and 0.822 ± 0.082 respectively on the original liver images and
0.877 ± 0.036, 0.964 ± 0.037 and 0.956 ± 0.022 respectively on the
enhanced liver images. It can be seen that the Chan–Vese approach
improves the dice, sensitivity and accuracy of liver segmentation on
the enhanced liver slices.

We further analyze the performance of liver segmentation on 24
liver slices from 4 different volumes as shown in Fig. 7. Figs. 7a, 7b,
7c and 7d show the average values of accuracy, dice and sensitivity
for the Chan–Vese approach both with and without enhancement. It
can be seen from the performance results comparison (Figs. 7a, 7b, 7c
and 7d) that the cross-modality guided liver enhancement improves the
quality of segmentation in terms of accuracy, dice and sensitivity using
the proposed Chan-Vese approach for liver segmentation.

A shape-intensity prior level set proposed by Wang et al. [35]
used atlases which are weighted in the selected training datasets by

calculating the similarities between the atlases and the test image
to dynamically generate a subject-specific probabilistic atlas for the
test image. The most likely liver region of the test image is further
determined based on the generated atlas. A rough segmentation is
obtained by a maximum a posteriori classification of the probability
map, and the final liver segmentation is produced by a shape intensity
prior level set in the most likely liver region. Thus the overall process
is slow due to the training phase. The process also depends upon large
datasets for training.

In the proposed work, we do not use training and hence do not need
large datasets. In the absence of strong edges, region based formulation
using Chan–Vese performs well for segmentation which can be seen
from the performance results and the authors employ a cross-modality
guided image enhancement as a pre-processing step which further
improves the quality of segmentation. The proposed segmentation al-
gorithm can delineate liver boundaries that have levels of variability
similar to those obtained manually. The proposed approach speeds up
the overall process of liver segmentation by 100 times on the GPU
compared to the CPU implementation.

MICCAI test data provided by the organizers of the ‘‘SLIVER07’’
contains clinical 3D computed tomography (CT) scans [42,43]. The
proposed method is based on a cross-modality approach in which we
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Fig. 6. Liver segmentation from original and enhanced CT image 3.

require MR scans for the guided enhancement. To the best of our
knowledge, this is the first non-learning approach using cross-modality
guided contrast enhancement for liver segmentation. The registered
MR image is used to enhance the low quality CT image. This is done
by using a non-learning approach of 2D histogram equalization and
matching.

Kavur et al. [44] reported that CT-MR liver segmentation is inferior
to CT or MR image segmentation due to CT-MR visual difference. The
study from CHAOS Challenge by Kavur et al. [44], proposes a learning
based approach for segmentation taking CT-MR images as training
inputs in order to increase the training data and reveal common fea-
tures of incorporated modalities for an organ. The deep model learns
from the combined CT and MR datasets. The cross-modality (CT-MR)
learning proved to be more challenging than individual training. Such
complicated tasks could benefit from spatial priors, global topological,
or shape-representations in their loss functions as employed by some of
the deep learning models.

However, we show that the enhanced CT image using cross-
modality approach provides better segmentation results in terms of
dice, accuracy and sensitivity compared to the original CT image. In
the next section, we discuss the speedup obtained by the proposed GPU
implementation in comparison to the CPU.

4.3. Speedup

In this section, we discuss the speedup obtained by the GPU imple-
mentation of Chan–Vese compared to CPU implementation and analyze

Table 3
Liver segmentation speedup analysis.

Liver Chan–Vese without enhancement Chan–Vese with enhancement

Slice # CPU (s) GPU (s) Speedup CPU (s) GPU (s) Speedup

1 4.324 0.276 15.667 276.15 2.78 99.335
2 4.117 0.256 16.082 270.098 2.44 110.696
3 2.679 0.195 13.738 173.93 1.95 89.195
4 2.857 0.211 13.54 165.03 1.65 100.018
5 3.112 0.219 14.21 175.82 1.73 101.63

Average 3.49425 0.2345 14.647 221.302 2.205 99.811
Std. Dev. 0.752 0.033 1.155 55.8 0.484 7.65

the impact of enhancement on speedup. The speedup analysis of liver
segmentation on the CPU and the GPU is shown in Table 3.

The computational complexity of the proposed Chan–Vese algo-
rithm is O(N) where N is the number of elements in the CT image.
So even for the large images, it is also very efficient. The average
time taken by CPU implementations (with and without enhancement)
are 221.302 ± 55.8 s and 3.49425 ± 0.752 s respectively and GPU
implementations are 2.205 ± 0.484 s and 0.2345 ± 0.033 s respectively.
Hence the GPU implementations (with and without enhancement) on
an NVIDIA GPU GeForce GTX 1050 with RAM 4 GB provide an average
speedup of 99.811 ± 7.65 times and 14.647 ± 1.155 times in compari-
son to the CPU implementation on Intel(R) Core(TM) i7-7700HQ CPU
@ 2.80 GHz RAM 24 GB. The reason behind the obtained speedup is the
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Fig. 7. Segmentation quality assessment on different volumes.

avoidance of intermediate kernel calls and exploiting high level paral-
lelism present in liver contrast enhancement and Chan–Vese approach
for image segmentation.

Liver contrast enhancement uses a 2D histogram technique which
includes histogram of the pair of neighboring elements in the CT and
MR images. Hence the complexity increases due to pairwise histogram
analysis of cumulative distributive function and histogram matching.
The Chan–Vese approach includes time-consuming numerical calcula-
tions of partial differential equations. These tasks i.e. 2D histogram
calculations and solutions to the partial differential equations have
been implemented on an NVIDIA GPU in parallel for liver segmentation
providing an average speedup of 99.811 ± 7.65 compared to the CPU
implementation. The time is computed in GPU time and it is optimized
by avoiding the intermediate memory transfers.

We perform the statistical treatment of results. P value from analysis
of variance (ANOVA) for the datasets is 2.43 ∗ 10−14 which is less than
0.0005 (0.05%). We reject the null hypothesis and conclude that not all
means are equal which confirms the means are statistically significant
for the experiments.

4.4. Discussion

The Chan–Vese algorithm is quite slow due to time-consuming
computations of the partial differential equations, especially when
dealing with large medical datasets. It can pose a problem for a

real-time implementation and an efficient parallel approach is highly
desirable. The Chan–Vese algorithm is a very powerful algorithm due to
improved noise robustness. However, there are cases in which the liver
segmentation is less accurate and sensitive. It is necessary to enhance
the contrast of the liver for more accurate segmentation. Hence,
we incorporate cross-modality guided image enhancement as a pre-
processing step to improve the quality of liver segmentation. However,
the cross-modality approach includes 2D histogram analysis which is
time-consuming and includes repetitive tasks of pairwise histogram
analysis of liver image elements. This is also applicable to numerical
calculations of the partial differential equations in Chan–Vese. These
repetitive tasks are implemented on an NVIDIA GPU using threads of
blocks and the performance is improved significantly in comparison to
the CPU implementation.

5. Conclusion

In this paper, we propose a fast parallel liver segmentation using
the Chan–Vese approach and study the impact of contrast enhancement
on liver segmentation. The proposed approach is fast, accurate and
outperforms other approaches for low quality CT liver slices. The
proposed segmentation algorithm can delineate liver boundaries that
have levels of variability similar to those obtained manually. GPU im-
plementation of the proposed approach speeds up the overall process of
liver segmentation by 100 times compared to the CPU implementation.
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Chan–Vese approach for liver segmentation is less sensitive
(0.816 ± 0.085 from Table 2) when applied to original CT liver images.
Sensitivity should be increased for more accurate liver segmentation.
Hence, we apply a cross-modality guided contrast enhancement on
CT liver images and segment the liver using the proposed Chan–
Vese approach for segmentation. The work compares CPU and GPU
implementations with and without enhancement. The average dice,
sensitivity and accuracy of the liver segmentation are 0.877 ± 0.036,
0.964 ± 0.037 and 0.956 ± 0.022 respectively on the enhanced liver
images. The cross-modality guided contrast enhancement improves the
quality of the results by decreasing the false positives. The proposed
GPU implementation with enhancement improves the speedup by
99.811 ± 7.65 times over CPU implementation. Hence the parallel
implementation of Chan–Vese approach for liver segmentation is faster
when implemented on the GPU and more accurate when the contrast
of the CT liver image is enhanced.
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