

Building a typology of farms based on their performance. A tool to support agricultural policy-making

José A. Gómez-Limón Jaime Martín García Rubén Granado-Díaz

WEARE: Water, Environmental and Agricultural Resources Economics Research Group Universidad de Córdoba

1. INTRODUCTION

2. DATA AND METHODS

3. RESULTS

4. CONCLUSIONS

- Heterogeneity within agricultural systems; farm-level differences based on structural features, production management, socio-demographic characteristics, etc.
- Wide range of variations in farms' economic and environmental performance.
- Agricultural policy should account for this heterogeneity within every agricultural system to properly design policy instruments (tailoring) and to implement them accurately (targeting).
- Agricultural heterogeneity is usually addressed through farm typologies based on geographical, size, and types of farming criteria.
- However, these typologies do not necessarily give information about actual farms' performance (i.e., their contribution to achieving policy objectives).

Objetives

- To propose a typology-building approach that identifies a manageable number of farm categories within a specific agricultural system, where each category contains farms exhibiting a similar economic and environmental performance.
- The delineated farm types could be considered as differentiated target groups facilitating the design and implementation (tailoring and targeting) of more effective and efficient policy instruments.
- The **Spanish rainfed field crops agricultural system** has been chosen as a case study to illustrate the empirical implementation.

Source of information: RECAN

- **RECAN** (Spanish brand of the FADN) as source of microeconomic data at the farm level.
- Microdata from TF 15 and 16 (COP and general field cropping) at the national level, restricted to farms whose total area is rainfed.
- **559 farms** in the three-year panel sample (2019-2021).
- Average values (2019-2021) for key performance indicators (economic and environmental performance as farms' "structural" features).

Economic and environmental performance indicators

Dimension	Indicator (ACRONYM)	Formula	Formula based on RECAN microdata	Units					
Economic performance indicators									
Productivity	Land productivity (LAND_PROD)	Total output Utilised Agricultural Area	SE131 SE025	€/ha					
Profitability	Return on Assets (ROA)	EBIT Total assets	SE420 + SE380 + SE390 SE436	%					
Viability	Economic viability (VIABILITY)	nic viability FNI SE420 LITY) Total Opportunity Costs $OC_{land} + OC_{labor} + OC_{non-labor}$		Dimensionless					
Environmental performance indicators									
Biodiversity	Shannon Diversity Index (SDI)	$-\sum p_i \times \ln(p_i)$	p_i based on RECAN microdata regarding farmland use	Dimensionless					
GHG emissions	GHG emissions (GHG_EM)	GHG emissions Utilised Agricultural Area	$\frac{\sum_{i} input_{i} \times kg CO2e/unit_{i}}{SE025}$	kg CO2e/ha					
Pollution emissions	Nitrogen inputs (NITROG)	Nitrogen in inputs Utilised Agricultural Area	(SE296 × 100) + N _{organic} SE025	kg N/ha					

Econometric modelling

- Latent profile analysis (LPA).
- LPA foundation. An example of human beings' height:

Introduction

Conclusions

Econometric modelling

• Laten profile analysis **model**:

$$f(y_i) = \sum_{k=1}^G \pi_k f_k(y_i | \theta_k)$$

• For a given number of **G profiles**, parameters can be estimated by maximizing the following likelihood function :

$$L(\theta_k, \pi_k | y_i) = \prod_{i=1}^n \sum_{k=1}^G \pi_k f(y_i | \theta_k)$$

• A multivariate normal distribution is assumed for f_k whose **parameters** are the **means** of the classifying variables considered for each profile $k(\mu_k)$ and their **variance-covariance matrices** (Σ_k).

Econometric modelling

- **Classification variables**: key economic and environmental farm performance indicators.
- Number of profiles (G): BIC criteria, statistical parsimony, and facility to interpret the results 3 Profiles
- Assessment of **synergies/trade-offs among indicators** based on the variance-covariance matrices:

$$Y = a_{x,y} + b_{x,y} X + \varepsilon \quad \rightarrow \quad b_{x,y} = \frac{dY}{dX} = \frac{cov(X,Y)}{var(X)}$$

- **Profile membership related to covariates** (three-step model).
- Software: Latent Gold 6.0.

Introduction Data an	ad methods Results	Conclusions	
Covariates (ACRONYMS)	Formula	RECAN code	Units
Farmer's characteristics			
Age (AGE)	-	-	Years
Gender (GENDER)	1= female, 0= male	-	-
Agricultural training (TRAIN)	1= formal academic, 0= practical experience	-	-
Full-time farmer (FULL_FARM)	1= yes, 0= no	-	-
Farm's structural characteristics			
Total farm area (F_AREA)	-	SE025	ha
Decoupled payments (DEC_PAY)	Decoupled payments UAA	SE630 SE025	€/ha
Environmental subsidies (ENV_SUB)	Environmental subsidies UAA	SE621 SE025	€/ha
Other CAP 2nd pillar subs. (OTHER_2P)	Other CAP 2nd pillar subsidies UAA	SE624-SE621 SE025	€/ha
Family Farm (FAM_FARM)	1= yes, 0= no	-	
Owned land (OWN_LAND)	UAA — Rented UAA UAA	SE025-SE030 SE025	%
Located in Castilla y León (REG_CYL)	1 = yes, 0 = no	-	-
Located in Castilla-La Mancha (REG_CLM)	1 = yes, 0 = no	-	-
Located in Andalucía (REG_AND)	1 = yes, 0 = no	-	-
Located in other regions (REG_OTH)	1 = yes, 0 = no	-	-
Location in less favored areas (LFA)	1 = yes, 0 = no	-	-
Farm's resources			
Non-land fixed assets (NL_FASSET)	Total fixed assets — Land assets UAA	SE441-SE446 SE025	€/ha
Outsourcing (OUTSOURC)	Contract work costs UAA	SE350 SE025	€/ha
Labor input hours (LABOR_H)	Total labor input hours UAA	SE011 SE025	hrs/ha
Debt ratio (DEBT)	Total liabilities Total assets	SE485 SE436	%

Three profiles LPA solution

Indicator	Profile 1 (n=235)	Profile 2 (n=212)	Profile 3 (n=112)	Overall (n=559)
LAND_PROD (€/ha)	519.4	777.7	262.5	565.6
ROA (%)	9.01	15.85	8.02	11.41
VIABILITY (dimensionless)	0.876	1.653	0.399	1.075
SDI (dimensionless)	0.874	0.707	0.763	0.789
GHG_EM (kg CO2e/ha)	291.6	304.4	196.0	277.2
NITROG (kg N/ha)	58.39	48.72	13.60	45.73
Profile size	0.420	0.379	0.201	

Synergies and trade-offs among indicators

Indicator X								
Indicator Y		LA	ND_PROD	KUA	VIABILITY	201	GHG_EIVI	NIIKUG
Profile 1	LAND_PROD							
	ROA		0.004					
	VIABILITY		-0.001	0.067				
	SDI		-0.000	0.001	0.051			
	GHG_EM		0.230	-0.481	-24.5	-56.8		
	NITROG		0.052	0.220	-2.92	-8.23	0.212	
	LAND_PROD							
2	ROA		0.004					
file	VIABILITY		0.001	0.037				
Pro	SDI		-0.000	-0.007	-0.054			
	GHG_EM		0.168	-2.48	5.21	57.8		
	NITROG		0.027	-0.937	4.58	23.8	0.205	
Profile 3	LAND_PROD							
	ROA		0.020					
	VIABILITY		0.001	0.047				
	SDI		0.000	0.011	0.288			
	GHG_EM		0.683	-1.26	-69.0	-45.8		
	NITROG		0.036	0.014	-4.76	-11.9	0.046	

Three-step model

	Profile 1		Profile 2		Profile 3 (reference)			
Covariate	Coef.		Coef.		Coef.			
Intercept	-4.559	а	-0.523	a,b		b		
TRAIN = 1	0.771	a,b	1.998	b		а		
FULL_FARM = 1	-0.949	a,b	-1.166	а		b		
DEC_PAY	0.004	а	0.013	b		а		
REG_CYL = 1	2.556	с	-2.580	а		b		
REG_CLM = 1	2.567	b	0.983	а		а		
REG_AND = 1	-4.399	а	-0.800	b		b		
LFA = 1	3.211	b	-0.806	а		a,b		
NL_FASSET	0.003	b	0.003	b		а		
OUTSOURC	0.008	a,b	0.012	b		а		
* Differences are shown at the 5% level, with shared letters indicating no statistically								

significant difference.

Results

Main conclusions

- The case study implemented proves that the proposed farm typology-building approach could be helpful in supporting policy decision-making.
- The results obtained could be used to enhance agricultural policy tailoring by fine-tuning the design of policy instruments to differentiate synergies/trade-offs across farm profiles.
- These results could also improve agricultural policy targeting by focusing differentiated policy instruments on each farm profile according to farms' specific structural features and farmers' socio-demographic characteristics.

Policy implications from empirical results

- Reducing the higher decoupled payments granted to farms in Profile 2 (economically sustainable) would not jeopardize their economic sustainability but would allow for increasing the policy support to farms in Profile 3 (environmentally sustainable with poor economic performance).
- Policy instruments constraining land use choices (e.g., CAP conditionality based on crop diversification) could be intensified for farms included in Profiles 1 and 3 without payment increases since these changes would not involve a worsened economic sustainability.
- To efficiently reduce GHG emissions and nitrogen pollution (i.e., with the least possible impact on economic performance), higher environmental payments should be focused on less intensive farms (Profiles 1 and 3).

Results

Conclusions

Limitations

- Limited suitability of the environmental indicators built, given the lack of detailed environmental information in the FADN microdata.
- These data limitations may be solved in the near future with the upgrade of the FADN into the Farm Sustainability Data Network (FSDN).

Further research / Next steps

• Farm classification from a **dynamic perspective**, considering how they evolve across years to face economic, technological, or policy changes.

THANK YOU FOR THE ATTENTION!

¿Any comments or suggestions?

José A. Gómez-Limón Jaime Martín García Rubén Granado-Díaz

WEARE: Water, Environmental and Agricultural Resources Economics Research Group Universidad de Córdoba