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Within the same agricultural system, there is substantial heterogeneity in farms’
performance depending on farms’ structural features and farmers’ decision-making.
This paper proposes a policy-oriented farm typology-building approach that groups
farms in the same agricultural system into categories based on their economic and
environmental performance. For this purpose, latent profile analysis (LPA) is used,
since it enables both the assessment of profile-specific synergies/trade-offs among
performance indicators and the implementation of a three-step procedure to account
for the covariates that characterize the resulting farm profiles. As an illustrative
case study, this methodological proposal is applied to categorize Spanish farms
included in the rain-fed field crops agricultural system. The results show that the
proposed typology-building approach is useful for agricultural policy-making, as it
allows for a better evaluation of how farms contribute to the achievement of policy
objectives and the design of differentiated policy instruments accounting for the
performance synergies/trade-offs across farm profiles (i.e. policy tailoring and
targeting).

Keywords: agricultural holdings; field crops; latent profile analysis; performance
trade-offs; agricultural policy

1. Introduction

Around the world, agricultural activity is conducted in a wide variety of climates,
landscapes, and human cultures. The vast area of land covered by agriculture gives
rise to multilevel heterogeneity, starting at the highest level with the diversity of agri-
cultural systems. At this level, the heterogeneity is characterized by several factors,
such as the environment (quantity and quality of the natural resources available – e.g.
climate and edaphoclimatic conditions), production technology, market conditions,
legal frameworks, and local know-how (Giller 2013). For instance, in the case of the
European Union (EU), there are 155 million hectares (ha) of agricultural land, where
agricultural systems range from highland grassland-based livestock farming to inten-
sive horticulture under greenhouses.
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Likewise, it must be noted that each agricultural system is made up of thousands of
farms. Thus, although these production units operate under the same productive frame-
work, a second level of heterogeneity can be observed. Within a common agricultural
system, differences at the farm level are related to factors that are (or can be) controlled
by farmers, such as farms’ structural features (e.g. farm size and the number of plots),
production management (involving a wide range of production intensity), and farmers’
socio-demographic characteristics (e.g. agricultural training) and psychological traits (e.g.
risk aversion or environmental concerns). This farm heterogeneity within the same agri-
cultural system has been found worldwide, as shown, for instance, by Weltin et al.
(2017), Guar�ın et al. (2020), and Stylianou, Sdrali, and Apostolopoulos (2020) in Europe;
Arbuckle et al. (2017) and Upadhaya, Arbuckle, and Schulte (2021) in the United States
of America (USA); Botero et al. (2021) and Benitez-Altuna, Trienekens, and Gait�an-
Cremaschi (2023) in Latin America; Kansiime, van Asten, and Sneyers (2018) and
Alvarez et al. (2018) in Africa; or Goswami, Chatterjee, and Prasad (2014) in Asia.

All the aforementioned sources of heterogeneity lead to substantial variation in farms’
economic, environmental, and social performance (e.g. G�omez-Lim�on and Sanchez-
Fernandez 2010; Modernel et al. 2018; B�ankuti et al. 2020), which poses a challenge for
agricultural policy-making. In this heterogeneous setting, policy efforts to promote more
sustainable food production should be based on an accurate design (i.e. tailoring) of pol-
icy instruments effectively targeted at specific agricultural systems and farm types, aim-
ing to achieve trade-offs between different farm dimensions in a way that properly
reflects society’s preferences (Graskemper, Yu, and Feil 2021; Huber et al. 2024).

There is growing societal concern about the negative environmental externalities of
agriculture (e.g. contribution to climate change, biodiversity loss, or water pollution)
(Pe’er et al. 2020). Therefore, to meet society’s demands and make agriculture more
environmentally friendly, current agricultural policy objectives go beyond the classical
economic rationale and incorporate ecological issues (Guerrero 2021). The EU’s
Common Agricultural Policy (CAP) is a good example of this shift, as it has progres-
sively been incorporating environmental and sustainable development objectives since
the 1990s. Key reforms in 1992, 2003, and 2013 introduced agri-environmental policy
instruments such as agri-environment-climate measures, cross-compliance, and green
direct payments, respectively, to promote environmentally sustainable farming practi-
ces (Alons 2017; Doukas, Vardopoulos, and Petides 2024).

At a global level, these environmental concerns about agriculture have been trans-
lated into the United Nations’ 2030 Agenda and the Sustainable Development Goals
(SDGs) (FAO, 2017). Established in 2015, these goals hold global agricultural activity
responsible for producing enough food to meet SDG 2 (Zero Hunger), while at the
same time contributing to the achievement of SDG 6 (Clean Water and Sanitation),
SDG 12 (Responsible Consumption and Production), SDG 13 (Climate Action) and
SDG 15 (Life on Land) (Pe’er et al. 2019).

The EU’s plan to achieve the SDGs is the European Green Deal (EGD) (European
Commission 2019). The EGD includes Farm-to-Fork and Biodiversity strategies focused
on transitioning to more sustainable agriculture (Boix-Fayos and de Vente 2023). Both
strategies aim to achieve concrete environmental targets at the EU level (e.g. reduce the
use and risk of chemical pesticides by 50%, reduce fertilizer use by at least 20%, or
ensure that 25% of total farmland is under organic farming by 2030). They seek to do so
without compromising farms’ economic performance, as this represents a sine qua non
for the continuity of agricultural activity. However, as many authors have pointed out
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(e.g. Matthews 2020; Pe’er et al. 2020; Scown and Nicholas 2020), the CAP design
should be further improved to provide policy support that boosts farms’ performance, in
order to ensure they fulfill their widely touted potential to contribute to the SDGs.

Within this context, policy decision-making focused on new environmental targets
must necessarily account for the marked heterogeneity in farms’ economic and envir-
onmental performance. The usual way of dealing with farm-level heterogeneity within
agricultural systems is through farm typologies, which seek to classify agricultural
holdings into homogenous groups based on multiple features (Andersen et al. 2007;
Huber et al. 2024).

Following van der Ploeg et al. (2009), two main types of farm typologies can be
identified. On the one hand, there are ordinary typologies based on farms’ structural
characteristics and/or farmers’ socio-demographic features. The EU’s farm typology
(European Commission 2021) is an excellent example of this, as it relies on criteria
relating to geographical location (i.e. administrative regions), economic size (i.e. total
standard output), and types of farming (i.e. the relative contribution of the various differ-
ent production activities to the total standard output). These kinds of typologies are built
based on an economic rationale, serving as valuable tools for assessing farms’ economic
performance and comparing this performance across farm types. However, they fail to
account for farms’ environmental performance, which is a key issue for policy evalu-
ation and policy-making (Rega et al. 2022). On the other hand, there are typologies
based on farming styles; that is, accounting for farmers’ opinions, attitudes, and/or
decision-making as factors influencing how the farming activity is carried out. In this
category, several policy-oriented typologies have been proposed to summarize the farm-
level heterogeneity concerning specific political issues (see next section). The ultimate
purpose of these typologies is to facilitate the monitoring of how policy objectives are
achieved and the design of new policy instruments by categorizing farm-level heterogen-
eity beyond economic performance (Bartkowski, Sch€ußler, and M€uller 2022).

Following the latter approach, this study proposes a method for developing a pol-
icy-oriented typology that identifies a manageable number of farm categories within a
specific agricultural system, where each category contains farms exhibiting similar
economic and environmental performance, quantified through key performance indica-
tors. To illustrate its empirical implementation, the Spanish rain-fed field crops agricul-
tural system has been chosen as a case study.

The proposed methodological approach is relevant in the current policy-making
context, in which agricultural policy aims to satisfy societal demands by improving
farms’ environmental performance (e.g. achieving the policy objectives established in
the EGD) while ensuring the economic sustainability of these agricultural holdings. In
this respect, the suggested approach of grouping farms with similar economic and
environmental performance is helpful, since it can be used to identify specific syner-
gies and trade-offs among the different key performance indicators within each farm
group, and to characterize the different farm categories according to farms’ specific
structural features and farmers’ socio-demographic characteristics. Thus, the delineated
farm types could be useful for differentiating groups of farms to evaluate how they
contribute to the achievement of policy objectives and for designing and implementing
more effective and efficient policy instruments (i.e. policy tailoring and targeting). In
this way, policy action would enable distinct changes in farming styles within each
farm category (i.e. farms’ performance) to ensure an optimal trade-off between farms’
economic and environmental performance.
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2. Contributions to existing literature on farm typologies

Farm typologies are a prevalent topic in the literature due to their strategic importance
for agricultural policy-making. Although existing farm typologies differ systematically
in terms of context, purpose, variables employed, and methods (e.g. Bartkowski,
Sch€ußler, and M€uller 2022), most previous studies converge on the two main
approaches described in the previous section. These approaches are discussed below,
examining the methodology in order to identify possible research gaps to be addressed
by the proposed farm classification procedure.

Most previous empirical studies on farm heterogeneity have developed farm typol-
ogies based on structural variables relating to farms (e.g. Weltin et al. 2017, consider-
ing farm size, location, or production specialization), farmers’ socio-demographic
characteristics (e.g. Morris, Henley, and Dowell 2017, accounting for age, gender, or
type of agricultural training), or a mixture of both (e.g. Benitez-Altuna, Trienekens,
and Gait�an-Cremaschi 2023). The most commonly used methods for this purpose have
been traditional cluster techniques because of their simplicity and effectiveness.
Analyses based on k-means and hierarchical clustering algorithms are the most exten-
sively used approaches in this avenue of research (e.g. Stylianou, Sdrali, and
Apostolopoulos 2020; Vogel and Beber 2022), although other approaches have also
been used (e.g. Graskemper, Yu, and Feil 2021, who used the Partitioning Around
Medoids – PAM – procedure). The main advantage of these studies is that they tend
to be comparable and reproducible because they are based on structural and economic
variables generally available in official statistics. However, these structural typologies
neither provide information about farms’ environmental performance nor allow
adequate monitoring to evaluate how current policy objectives are actually achieved
(Rega et al. 2022). For this reason, they do not fully support agricultural policy-
making, especially when farms’ environmental performance is the key issue to be
tackled.

A more recent approach consists of using variables related to farming styles to
classify farms, summarizing the heterogeneity of farmers’ perceptions, attitudes, and/or
decision-making. Specifically, these typologies have mainly sought to classify farmers
based on their opinions on environmental issues or the uptake of ecological manage-
ment practices (Bartkowski, Sch€ußler, and M€uller 2022). These farmer typologies are
policy-oriented tools as they allow for a more specific design and communication of
agri-environmental policy instruments depending on the various farmer profiles.
Although clustering algorithms have also been used to construct this kind of typology
(e.g. B�ankuti et al. 2020), finite mixture modeling methods represent the most suitable
statistical technique in this research line. In short, these techniques assume the exist-
ence of a latent categorical variable in the distribution of a dataset, which allows the
classification of observations (i.e. farms/farmers) into homogeneous groups (i.e. farm/
farmer types) in terms of farming styles. Generally, these typology exercises rely on
farmers’ subjective opinions and decisions, gathered through ad hoc surveys using cat-
egorical or ordinal variables (e.g. Likert scale-based variables to reflect farmers’ opin-
ions or dichotomic variables related to the adoption of ecological practices). For this
reason, the most common approach for developing these typologies is Latent Class
Analysis (LCA), which identifies observation classes (i.e. farm/farmer profiles) based
on similar distributions of a set of polytomous explanatory variables capturing farmers’
responses. It must be noted that finite mixture modeling methods such as the LCA
approach partially solve some of the shortcomings of traditional clustering techniques
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as the decision on the number of classes is based on more formal statistical criteria
(i.e. goodness-of-fit statistics) and is thus less arbitrary (Vermunt and Magidson
2002).1 Recent examples of applications of LCA to develop farmer typologies can be
found in the studies by Daxini et al. (2019) and Barnes, Thompson, and Toma (2022).

Nonetheless, although these policy-oriented typologies usually employ more
advanced statistical approaches than their structural counterparts, they face a notable
constraint. As explained above, most of these typologies address particular issues of
interest regarding farmers’ perceptions, attitudes, or decision-making (e.g. personal
opinions on environmental policy objectives or the adoption of specific farming practi-
ces), which involve the design of study-specific questionnaires and surveys.
Consequently, the data collection processes are expensive and time-consuming, limit-
ing the comparability of these typologies, since the case studies are difficult to update
or replicate elsewhere. Moreover, although these typologies can improve the tailoring
and targeting of agricultural policy instruments by identifying behavioral patterns, they
do not allow the achievement of policy objectives to be monitored, as they are not
based on farm performance indicators.

Based on the literature review conducted and the gaps in the knowledge on the
topic identified by Bartkowski, Sch€ußler, and M€uller (2022) and Huber et al. (2024),
this study adds to the existing literature by proposing a novel farm typology-building
approach that fulfills key criteria to effectively support policy evaluation and the
design of better tailored and targeted policy instruments. Specifically, the criteria for
the typology are as follows: (a) it is based on a comprehensive set of farm economic
and environmental performance indicators, (b) it is developed using readily available,
regularly updated official data, (c) it is built employing a method that assesses hetero-
geneous synergies and trade-offs among different indicators across farm types, and (d)
it enables the characterization of farm types based on farm and farmer characteristics.
To the best of the authors’ knowledge, the farm typology presented in this paper is the
first to meet all four criteria simultaneously.

First, our approach differs from most existing typologies that classify farms accord-
ing to similar structural variables or farmer typologies based on subjective opinions, as
they do not necessarily provide information about farms’ actual performance (i.e. their
contribution to achieving policy objectives). Conversely, the approach for constructing
a farm typology proposed here relies on a comprehensive set of farm-level economic
(productivity, profitability, and viability) and environmental (biodiversity and carbon
emissions) performance indicators to assess how farms contribute to achieving policy
objectives. In this sense, it is worth noting that many previous studies developed farm
typologies based on structural variables and/or farmers’ socio-demographic characteris-
tics, and after having defined the farm types, then assessed their economic and envir-
onmental performance (e.g. Modernel et al. 2018). However, only a few studies have
actually developed farm typologies based on farm performance indicators (e.g.
Haileslassie et al. 2016). Among them, only Sauer and Moreddu (2020) have consid-
ered a broad enough set of indicators to accurately measure individual performance for
the economic and environmental dimensions of sustainability.

Second, the farm typology proposed is based on the microdata provided by the Red
Contable Agraria Nacional (RECAN, the Spanish branch of the European Farm
Accountancy Data Network – FADN). This source of farm data is public and accessible
to analysts at no cost, thus avoiding the need for costly and time-consuming collection
of new data. Moreover, this data source is updated and published annually on a timely

Journal of Environmental Planning and Management 5



basis and ensures transparency, comparability, and replicability at the EU level, address-
ing the lack of reproducibility mentioned above. The suitability of this database for
building typologies is confirmed by the many previous empirical studies that use it for
classifying farms (e.g. Sauer and Moreddu 2020; Rega et al. 2022).

Third, it is worth pointing out that the main innovation of the typology approach
proposed is the finite mixture modeling method used for the clustering. Considering that
the variables we use to construct the typology (i.e. farm performance indicators) are con-
tinuous (not polytomous), using LCA as a statistical method for the analysis is unfeas-
ible. Instead, this study employs Latent Profile Analysis (LPA). This technique has the
same central assumptions and benefits as LCA but allows the use of continuous explana-
tory variables to identify categories (farm profiles) and estimate membership probabil-
ities. Consequently, LPA has been deemed the most suitable statistical method for our
case study. To the best of the authors’ knowledge, only two previous studies have used
LPA to develop a policy-oriented farm typology. H€oglind, Hansson, and Manevska-
Tasevska (2021) used LPA to explore the heterogeneity in adopting ecological manage-
ment practices among Swedish farmers. However, the most direct antecedent to this
research is the work by Barnes et al. (2023), who employed LPA to classify farms based
on their performance. Nonetheless, the present paper advances the research beyond the
aforementioned studies, in that the LPA model we run estimates full variance-covariance
matrices for each farm profile without considering any constraint. This has allowed us to
provide a novel assessment of profile-specific synergies/trade-offs among the different
economic and environmental indicators used in the classification.

Finally, another noteworthy methodological innovation of this paper is the imple-
mentation of a three-step procedure to account for the covariates that explain farms’
profile membership in the LPA model (i.e. farms’ structural features and farmers’
socio-demographic characteristics). This is highly useful for policy decision-making, as
it relates farm performance profiles with variables capturing farms’/farmers’ character-
istics, allowing a more targeted implementation of policy instruments.

3. Data source and case study

3.1. The source of data: the Spanish farm accountancy data network (RECAN)

The empirical application of the proposed typology-building approach to any agricul-
tural system requires the use of farm-level information, since it is the only type of
information that can reflect the potential heterogeneity in farms’ economic and envir-
onmental performance. In this respect, the FADN is considered the best source of
farm-level data at the EU level (Kelly et al. 2018). The RECAN (Spanish brand of the
FADN) collects data annually for a large sample of Spanish farms (around 9,000 farms
annually). These farms are selected using a quota sampling procedure based on the
European farm typology (European Commission 2021), guaranteeing that the annual
RECAN samples adequately represent all agricultural subsectors (i.e. types of farming,
TF) in Spain. The resulting RECAN database mainly collects farms’ annual accounting
information, such as output, production costs, subsidies, and balance sheets. However,
it also gathers data on several productive (e.g. crop mixes), structural (e.g. size or land
ownership), and environment-related (e.g. fertilizer and pesticide use) variables that are
useful for assessing farms’ performance; all these data are also updated annually.
Moreover, since this source of microdata is harmonized at the EU level, the method-
ology proposed for building the farm typology is fully reproducible elsewhere in the
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EU. All this explains why FADN/RECAN microdata have already been used in many
empirical applications aimed at assessing heterogeneous farm performance (e.g. Sauer
and Moreddu 2020; Rega et al. 2022), and also justifies their use in our case study.

Nonetheless, the use of FADN/RECAN microdata also entails several drawbacks.
First, this farm network only includes “commercial farms,” which in the case of Spain
(RECAN) are those with a total annual standard output above 8,000 Euros. Despite
this, RECAN is actually representative of the Spanish farm population, given that com-
mercial farms represent more than 92% of the utilized agricultural area (UAA) in
Spain and 97% of the value of its agricultural production. Second, it must be noted
that the FADN/RECAN was primarily designed to collect accounting data to assess
farms’ economic performance. In fact, only a few variables collected in this database
focus on environmental issues at the farm level. Although this makes the assessment
of farms’ environmental performance challenging, this source of microdata provides
enough information to allow the calculation of proxy indicators measuring this sustain-
ability dimension at the farm level, as evidenced in previous studies (e.g. Buckley
et al. 2016; Stetter and Sauer 2022; Robling et al. 2023). In any case, both limitations
imply that the results of the analysis and the policy implications drawn from them
should be taken with caution.

3.2. Rain-fed field crops in Spain

Field crops (i.e. cereals, oilseeds, protein crops, and root crops) occupy over half of
the world’s harvested area and account for a substantial part of global crop production
(see FAO 2022), meeting basic human and animal food needs worldwide. Therefore, a
large share of the natural resources used in farming activities (e.g. soil, water, and
energy) are allocated to these crops, which represent a key agricultural production sec-
tor for ensuring global food security.

According to the statistics published by the Spanish Ministry of Agriculture,
Fisheries, and Food referring to 2022 (MAPA 2023), the agricultural area devoted to field
crops in Spain covers 9.1 million ha, representing more than a third of the national UAA.
In terms of total area, cereals are the most important crops, with barley covering the larg-
est area (2.5 million ha), followed by soft wheat (1.9 million ha), oats (504,000 ha), and
durum wheat (259,000 ha). Also, forage crops such as alfalfa and fodder vetch account
for a significant area within the sector, covering 1.1 million ha. Other relevant field crops
are sunflower (631,000 ha), protein crops for livestock feeding purposes (mainly field
peas, vetch, and sweet lupins, with 161,000 ha), and legumes for human consumption
(pulses such as lentils, chickpeas, or beans, accounting for 158,000 ha).

Notwithstanding, the production of field crops differs notably under rain-fed and
irrigated conditions, in terms of both economic (e.g. productivity) and environmental
(e.g. intensity of input use) performance (e.g. Sinisterra-Sol�ıs et al. 2023).
Accordingly, we consider specialized farming in rain-fed field crops as a distinct agri-
cultural system (i.e. similar resource availability, production technology, market condi-
tions, and legal framework) suitable for the proposed empirical analysis. Thus, the
target farm population analyzed was limited to the Spanish farms classified as TF 15
(specialist cereals, oilseeds, and protein crops) and TF 16 (general field cropping),
where the entire farm area is rain-fed. According to the Spanish agricultural census,
the agricultural system chosen for the analysis accounts for 3.1 million ha operated by
34,852 farms.
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The boundaries established for the rain-fed field crops agricultural system allowed
us to draw a representative panel sample from the RECAN microdata (n¼ 559) for the
three-year period 2019–2021.2 This panel sample enabled us to assess farms’ economic
and environmental performance as structural features, accounting for the mean values
of the indicators considered across the three years, thus minimizing potential biases
due to abnormal agricultural years.

For informative purposes, the main descriptive statistics for the RECAN variables
characterizing the sample of farms included in the rain-fed field crops agricultural sys-
tem (farmers’ and farm characteristics, economic variables, and environment-related
variables) for the last year analyzed (2021) are shown in Table S1, included in
Appendix A as supplementary material. Overall, high values of dispersion measures
for all variables highlight the heterogeneity of the farms within this agricultural sys-
tem. Cases worth mentioning are the variability in the farms’ physical size (ranging
from 8 to 971 ha), total output (from 6,400 to 626,312 Euros), and profitability (farm
net income, FNI, varying between −e314/ha and e7,412/ha). The same applies to the
environmental variables assessing input use, all of which range from e0/ha to large
values (e.g. e682/ha spent on fertilizers), indicating markedly different environmental
pressures.

All the data introduced above justify the selection of the Spanish rain-fed field
crops as a suitable case study for this research, since the typology built will allow the
classification and characterization of the highly heterogeneous farm performance in
this agricultural system, enabling improved governance.

4. Typology building

4.1. Farm performance indicators and covariates

This section details and justifies the farms’ economic and environmental performance
indicators included as classificatory variables for constructing the proposed policy-ori-
ented typology.

To ensure a reasonable ratio between the number of parameters to be estimated by
the LPA model and the sample size, accounting for statistical parsimony (i.e. a good
fit of the explanatory model with the minimum number of regressors), only five key
performance indicators were chosen (see Table 1), as explained below.

Making sure that farms achieve and maintain reasonable farm-level economic per-
formance is a policy priority, since only by fulfilling this requirement can the continu-
ation of this productive activity be guaranteed, and along with it, food security, the
vitality of rural areas, and the provision of ecosystem services (Finger and El Benni
2021). In fact, the first specific objective guiding the design and implementation of the
CAP is “to support viable farm income and resilience of the agricultural sector across
the Union to enhance long-term food security and agricultural diversity.” However,
farm economic performance is a multidimensional concept, the assessment of which
involves several indicators (e.g. Coppola et al. 2022; Robling et al. 2023).
Consequently, our assessment approach accounts for the three main economic dimen-
sions analyzed in the literature (Spicka et al. 2019): productivity, profitability, and
viability.

Productivity is defined as the relationship between a farm’s total production and
the inputs used to achieve that level of output. Various indicators have been used to
assess farms’ productivity and/or technical efficiency (e.g. Rada and Fuglie 2019;
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Gaviglio et al. 2021). For our case study, land productivity (LAND_PROD, measured
in euros per hectare) was chosen as the most suitable indicator for a farm classification
based on this dimension of economic performance.

Profitability relates the farm’s level of profits to the capital invested in operating
the farm. A wide variety of indicators to assess farm profitability can be found in the
literature (Coppola et al. 2022). For this study, the Return on Assets (ROA), computed
as the farm’s Earnings Before Interests and Taxes (EBIT) divided by its total assets,
expressed as a percentage, was deemed the most suitable indicator for assessing farms’
capacity to generate profits.

A farm can be considered economically viable when it achieves a level of income that
is enough to cover all farm operating costs while also ensuring an appropriate return to
production factors owned and provided by the farmer (e.g. �Spi�cka and Deren�ık 2021).
Hence, in line with prior research utilizing data from the FADN (e.g. Coppola et al. 2022;
G�omez-Lim�on et al. 2023), the indicator used to assess farm viability (VIABILITY) was
computed by dividing the Farm Net Income (FNI) by the total opportunity costs generated
by the use of inputs provided by the farmer (i.e. land, labor, and non-land assets).3

Table 1 shows how each economic indicator has been calculated using RECAN
microdata.

On the other hand, the assessment of farms’ environmental performance has been
based on several specific CAP objectives. Accordingly, two dimensions were used to
measure the farms’ environmental performance: biodiversity and greenhouse gas (GHG)
emissions. This choice reinforces the policy-oriented nature of the proposed farm typology.

Bearing in mind the constraints of the FADN/RECAN data concerning farms’
environmental information, a comprehensive literature review was conducted to find
the most suitable FADN indicators to account for the heterogeneity in farms’ environ-
mental performance dimension (e.g. Robling et al. 2023).

Table 1. Farm performance indicators.

Dimension
Indicator

(ACRONYM) Formula
Formula based on
RECAN microdata Units

Economic performance indicators
Productivity Land

productivity
(LAND_
PROD)

Total output
UAA

SE131
SE025 e/ha

Profitability Return on
Assets (ROA)

EBIT
Total assets

SE420 þ SE380 þ SE390
SE436 %

Viability Economic
viability
(VIABILITY)

FNI
Total Opport: Costs

SE420
OClandþOClaborþOCnon-land assets

Dimensionless

Environmental performance indicators
Biodiversity Shannon

Diversity
Index (SDI)

−
P

pi � ln pið Þ pi based on RECAN
microdata regarding
farmland usea

Dimensionless

GHG emissions GHG emissions
(GHG_EM)

GHG emissions
UAA

P
i
inputi� kg CO2e=uniti

SE025 kg CO2e/ha

Note: api is the share of the total farm area devoted to the following land uses: cereals, oilseeds, protein
seeds and legumes, forage crops, other field crops, vineyards, olive groves, other permanent crops,
permanent grassland, non-cultivated land, and forest land.
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Regarding farm biodiversity, the chosen indicator should capture the contribution
the farms make to ecosystem services by preserving wildlife, habitats, and landscapes.
For this purpose, the Shannon Diversity Index (SDI) was chosen. SDI quantifies the
landscape heterogeneity (i.e. land use) at the farm level, which is positively related to
farm biodiversity since it creates diverse habitats suitable for different organisms
(Belfrage, Bj€orklund, and Salomonsson 2015).

At this point, it is worth noting that although the farms analyzed are the ones
included in the rain-fed field crops agricultural system (i.e. those whose farming activ-
ity mainly involves this kind of crop), they could have some plots cultivated with other
crops (e.g. permanent crops) or dedicated to livestock activities (e.g. grassland). Also,
a share of their farmland could be devoted to non-agricultural uses, such as non-culti-
vated land or forest. In this regard, RECAN provides information on the farmland area
devoted to the following groups of crops and other land uses: cereals, oilseeds, protein
seeds and legumes, forage crops, other field crops, vineyards, olive groves, other per-
manent crops, permanent grassland, non-cultivated land, and forest land. Thus, the SDI
was calculated at the farm level based on the shares of these land uses in farms’ total
farmlands (pi), applying the formula included in Table 1. Accordingly, the SDI
obtained is a suitable proxy of the biodiversity supported by the farm (e.g. Uthes,
Kelly, and K€onig 2020; Dabkiene, Balezentis, and Streimikiene 2021), yielding dimen-
sionless values for each farm analyzed, where the higher the score, the greater the
level of expected biodiversity on the farm.

Since climate change is a key issue, GHG emissions were also used to assess
farms’ environmental performance. Unfortunately, RECAN information does not allow
for a direct assessment of this environmental pressure at the farm level (Kelly et al.
2018). However, GHG emissions can be estimated by adapting the methodology pro-
posed by the Intergovernmental Panel on Climate Change, linking RECAN data to
external information, as proposed by Baldoni, Coderoni, and Esposti (2017) and Stetter
and Sauer (2022). In this respect, the emissions assessed were limited to the farm gate
level to account for the emissions directly associated with farmers’ decision-making
(i.e. farm performance) (Coderoni and Esposti 2018). Following this approach, GHG
emissions from farms included in the rain-fed field crops agricultural system primarily
stem from energy consumption (i.e. CO2 emissions from fuels and electricity) and fer-
tilizer use (i.e. nitrous dioxide emissions from nitrogen fertilizers). Hence, based on
each farm’s energy and fertilizer use, the sum of the total kg of CO2 equivalent
(CO2e) emitted was computed to quantify farms’ GHG emissions. The different types
of GHG emissions were converted into CO2e according to their updated Global
Warming Potential (GWP) coefficients provided by the IPCC Sixth Assessment
Report.

Thus, to estimate farms’ total GHG emissions, the physical quantity of each input i
(AIi, measured in liters for fuel, kWh for electricity, and kg of nitrogen for fertilizers)
was multiplied by a specific emission factor (EFi, measured in kg of CO2e per input
unit), as shown in expression (1):

GHG emissions ¼
X

i
AIi � EFi¼

X
i

CIi
pi

� EFi (1)

However, since the RECAN only provides monetary values for the use of fuel,
electricity, and organic fertilizers (i.e. fuel, electricity, and organic fertilizer costs), the
physical quantities were estimated by dividing each input cost (CIi) by its mean price
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(pi). The RECAN codes used in the calculation of these emissions were 1040 (cost of
motor fuels and lubricants), 5020 (cost of electricity), 5030 (costs of heating fuels),
SE296 (amount of nitrogen in mineral fertilizers),4 and 3034 (cost of organic fertilizers
such as manure, slurry, or compost). Mean prices for fuel and electricity were sourced
from official Spanish statistics (MINTUR 2023; MITECO 2023). In the case of
organic fertilizers, these prices were calculated using RECAN annual information.

Thus, the proposed GHG emissions indicator (GHG_EM, measured in kg of CO2e
per hectare) captures each farm’s contribution to climate change. Consequently, a
lower value of the ratio means better performance regarding climate change mitigation.

Table 1 also shows how each environmental indicator has been calculated using
RECAN microdata and other sources of information.

The set of indicators used to build the proposed typology ensures a comprehensive
assessment of farms’ economic and environmental performance, considering their most
relevant dimensions for the analysis. These indicators effectively account for the diver-
sity in farms’ performance, providing farm profiles with relatively homogenous per-
formance gaps and synergies/trade-offs between economic and environmental
indicators. Identifying these profiles can be helpful for policy evaluation and for
enhancing the design and targeting of policy instruments to address key issues.

It is worth noting that all economic and environmental performance indicators
were calculated for the 559 farms sampled for each of the three years considered
(2019–2021). However, the variables used to build the farm typology were the mean
values of the indicators over the three-year period analyzed. This decision ensures a
more robust classification, as it treats farms’ performance assessment as a structural
feature, accounting for prevailing agricultural practices (e.g. Guo, Marquart-Pyatt, and
Robertson 2023) and interannual variability of weather conditions affecting crop yields
(e.g. Coppola et al. 2022).

Additionally, the proposed methodology includes the implementation of a three-
step procedure (see next section), which will allow us to account for a set of covariates
that explain farms’ membership in the profiles defined in the typology. Table 2 pro-
vides information on the description and calculation of the 17 covariates considered
for this purpose, which are related to farmers’ characteristics, farms’ structural charac-
teristics, and farms’ resources. Descriptive statistics for the complete set of covariates
are shown in Table S2 included as supplementary material (see Appendix B).

The results of this three-step procedure can significantly facilitate the implementa-
tion of agricultural policy. In fact, these covariates will provide the information needed
to appropriately target policy instruments to ensure the policy objectives set for each
farm category (differentiated by performance) are more efficiently achieved.

4.2. Latent profile analysis (LPA)

LPA is a type of finite mixture modeling approach that focuses on identifying an underly-
ing unobserved categorical variable, allowing the classification of a population of individ-
uals into several subpopulations (i.e. latent profiles, classes, or groups) based on a
specific set of continuous variables. In our case, LPA was used to classify farms based
on the economic and environmental performance indicators defined in the previous sec-
tion, thereby identifying several groups of farms exhibiting similar performance.

This statistical technique has been extensively used in person-centered analyses in
psychology (Williams and Kibowski 2016) and organizational sciences (Woo et al.
2018), and more recently in agricultural and resource economics (e.g. Morgan et al.
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2015; Villanueva, Vernaza-Qui~n�onez, and Granado-D�ıaz 2023). However, to the best
of the authors’ knowledge, only H€oglind, Hansson, and Manevska-Tasevska (2021)
have used it previously for farm classification purposes.

LPA uses probabilistic models to identify underlying groups (i.e. profiles) by esti-
mating the probability that individuals belong to them. This method starts with the def-
inition of a probability density function (f) for a set of independent multivariate
observations (yi, farm i characterized by j performance indicator values), as follows
(Masyn 2013):

f yið Þ ¼
XG

k¼1

pkfk yijhkð Þ (2)

with fk being the density function defined for profile k, hk the parameters of that dens-
ity function, pki the probability of an observation belonging to that particular profile
(where pk � 0 and

PG
k¼1 pk ¼ 1), and G the number of profiles.

The parameters of this model (hk , pk) for a given number of G profiles can be
estimated by maximizing the following likelihood function (Fraley and Raftery 2002):

L hk , pk jyið Þ ¼
Yn

i¼1

XG

k¼1

pkf yijhkð Þ (3)

Table 2. Set of covariates considered for the three-step procedure.

Covariates (ACRONYMS) Formula / codification

Formula
based on
RECAN
microdata Units

Farmer’s characteristics
Age (AGE) – – Years
Gender (GENDER) 1 ¼ female, 0 ¼ male – –
Agricultural training (TRAIN) 1 ¼ formalized,

0 ¼ practical experience
– –

Full-time farmer (FULL_FARM) 1 ¼ yes, 0 ¼ no – –
Farm’s structural characteristics
Total farm area (F_AREA) – SE025 ha
Decoupled payments (DEC_PAY)5 Decoupled payments

UAA
SE630
SE025 e/ha

Environmental subsidies (ENV_SUB) Environmental subsidies
UAA

SE621
SE025 e/ha

Other CAP pillar 2 subsidies (OTHER_2P) Other CAP pillar 2 subsidies
UAA

SE624-SE621
SE025 e/ha

Owned land (OWN_LAND) UAA−Rented UAA
UAA

SE025-SE030
SE025 %

Located in Castilla y Le�on (REG_CYL) 1 ¼ yes, 0 ¼ no – –
Located in Castilla-La Mancha (REG_CLM) 1 ¼ yes, 0 ¼ no – –
Located in Andaluc�ıa (REG_AND) 1 ¼ yes, 0 ¼ no – –
Location in less favored areas (LFA) 1 ¼ yes, 0 ¼ no – –
Farm’s resources
Non-land fixed assets (NL_FASSET) Total fixed assets−Land assets

UAA
SE441-SE446

SE025 e/ha

Outsourcing (OUTSOURC) Contract work costs
UAA

SE350
SE025 e/ha

Labor input hours (LABOR_H) Total labor input hours
UAA

SE011
SE025 hrs/ha

Debt ratio (DEBT) Total liabilities
Total assets

SE485
SE436 %
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A multivariate normal distribution is typically assumed for fk, with their parameters
being the means of the classifying variables considered for each profile k (lk) and their
variance-covariance matrices (Rk). Consequently, each profile is centered around its
multivariate mean, while the variance-covariance matrix defines its geometry.
Generally, the variance-covariance matrices are parametrized by imposing certain sim-
plifying assumptions or constraints among profiles to reduce the number of parameters
to be estimated. The possible combinations allow the estimation of up to 14 different
models according to the volume, orientation, and shape of the profiles and the differ-
ences among them (Celeux and Govaert 1995). In our case, the variance-covariance
matrices were estimated without considering any constraint, allowing each profile to
have its own geometry. In doing so, we obtained different covariances between every
pair of classifying variables (farm performance indicators) for each profile, allowing us
to analyze the specific synergies and trade-offs among the different economic and
environmental performance indicators within each farm group identified.

Further detailed descriptions of LPA models are available in Vermunt and
Magidson (2002) and Masyn (2013).

As mentioned above, one of the outcomes of the chosen LPA modeling approach
was the variance-covariance matrices of the indicators for each profile. However, vari-
ance and covariance values are strongly influenced by the units of measurement used
for the performance indicators, meaning they are not a suitable measure to assess the
trade-offs or synergistic relationships between them. Instead, single linear regression
coefficients combining every pair of indicators (X and Y) were obtained using the fol-
lowing expression:

Y ¼ ax, y þ bx, y X þ e ! bx, y ¼ dY

dX
¼ covðX , YÞ

varðX Þ (4)

The coefficients bx, y measure the average change in indicator Y (response variable)
for one unit of change in indicator X (explanatory variable) while holding the remain-
ing indicators constant (i.e. the ceteris paribus condition). The coefficients and their
corresponding standard errors, from which the significance levels were obtained, were
calculated using the Delta method. This method allows the estimation of exact standard
errors for functions of parameters obtained through maximum likelihood, provided that
the function used is invertible and differentiable, as is our case (the ratio of two
parameters) (Oehlert 1992).

The LPA models provide parameter estimates for every profile k and membership
probabilities for every individual i. The latter results can be used to relate the probabil-
ities of profile membership with several covariates (Nylund-Gibson and Masyn 2016).
For this purpose, the three-step approach developed by Vermunt (2010) and Bakk,
Tekle, and Vermunt (2013) was applied, thereby avoiding problems associated with
the alternative one-step approach, including the undesirable influence of auxiliary vari-
ables on class membership, incorrect estimates, and incorrect standard errors (Bakk,
Oberski, and Vermunt 2016; Collier and Leite 2017).6 The three-step approach
involves, first, the estimation of the LPA model without covariates (step 1); then, the
posterior membership probabilities of each individual to each profile are calculated
from the previous LPA model (step 2); and, finally (step 3), a regression model (three-
step model shown next) is used to determine the association between the posterior
class membership probabilities obtained and external variables such as farms’ and
farmers’ characteristics (i.e. covariates shown in Table 2). By including these variables
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as covariates in the three-step model, we can better understand the factors that affect
farms’ profile membership. Starting with the full set of covariates shown in Table 2,
following a backward stepwise procedure, non-statistically significant covariates were
sequentially eliminated until a fully significant model was obtained.

The probability of being assigned to a specific profile ai based on farm-specific cova-
riates zi was calculated using the expression provided by Vermunt and Magidson (2016):

P aijzið Þ ¼
XK

x¼1

P xjzið ÞP aijxð Þ (5)

with x being the true profile membership obtained from the LPA posterior classification,
P xjzið Þ the probability of farm i being assigned to the true profile x for this farm’s spe-
cific information zi, and P aijxð Þ the conditional probabilities of responses between
assigned and true profile memberships. For our case study, we employed proportional
class assignment and the maximum likelihood adjustment method to rectify biases intro-
duced by classification errors, as proposed by Vermunt and Magidson (2016).

LatentGOLD 6.0 (Vermunt and Magidson 2021) was used to estimate all models
for LPA and the three-step approach.7

5. Results

5.1. Performance indicators

As explained above, the three-year means of the five key performance indicators were
calculated for the 559 Spanish farms in the rain-fed field crops agricultural system that
make up the panel sample. Table 3 shows their main descriptive statistics, confirming
the expected high degree of heterogeneity among farms in terms of their economic and
environmental performance. In fact, all values of the coefficient of variation are greater
than 30%, with extreme maxima and minima for every indicator. Thus, these results
support the idea that within the same agricultural system (e.g. Spanish rain-fed field
crops), farms vary widely in terms of their performance and suggest that this hetero-
geneity could be better understood by defining different farm types.

5.2. Farm typology

Taking farm performance indicators as classification variables, LPA models were run
for different numbers of profiles (from k¼ 1 to k¼ 10). For each LPA model, an array
of fit indices was obtained (see Table S3 in Appendix D, included as supplementary
material). Comparing the goodness-of-fit statistics, various different numbers of

Table 3. Descriptive statistics for farm performance indicators (n¼ 559).

Variable Mean St. Dev. CV (%) Max Min

Economic performance indicators
LAND_PROD (e/ha) 565.6 323.9 57.26 1,575.3 141.5
ROA (%) 11.41 9.32 81.71 47.31 −1.69
VIABILITY (dimensionless) 1.075 0.868 80.77 4.070 −0.225
Environmental performance indicators
SDI (dimensionless) 0.789 0.242 30.66 1.331 0.211
GHG_EM (kg CO2e/ha) 277.2 112.0 40.40 621.1 57.7

Source: Own elaboration based on RECAN microdata.
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profiles could be chosen as the most suitable solution (Nylund-Gibson and Choi
2018). However, the decision about the most appropriate number of profiles for the
empirical analysis should also be based on the parsimony principle, selecting the
model that achieves a desired level of goodness-of-fit with the fewest number of pro-
files possible, since parsimonious models can be more easily interpreted and under-
stood. According to the goodness-of-fit statistics and parsimony criteria, the model
with three profiles (k¼ 3, with 62 parameters to be estimated) was considered the
most suitable result for the proposed empirical analysis.

As shown in Table 4, the three-profile solution identifies two large groups of farms
(Profiles 1 and 2, each comprising around 40% of the farms in the sample) and one
medium-sized group (Profile 3, with around 20% of the sampled farms). This table
also shows the means of the farm performance indicators for each profile, allowing us
to provide the following descriptions of farm types:

� Profile 1 shows the best performance for the SDI indicator. Regarding LAND_
PROD and VIABILITY indicators; their mean values are intermediate between
the other two profiles. Furthermore, it is similar to Profile 3 in terms of its poor
mean values for ROA and to Profile 2 in its poor GHG_EM values. This profile
was labeled “mixed performance farms” based on these results.

� Profile 2 has the best mean performance for all economic indicators while show-
ing the worst performance for SDI and GHG_EM indicators. Thus, this profile
was characterized as “economically sustainable farms.”

� Profile 3 has an outstanding climate-related performance (the best mean values
for GHG_EM) but the worst results for all economic indicators. In contrast to
Profile 2, this was labeled “climate-sustainable farms.”

5.3. Farm performance indicators: synergies and trade-offs

Table 5 shows the variance-covariance matrices estimated for the three-profile LPA
solution, showing the synergies and trade-offs between the key performance indicators

Table 4. Characterization of farm profiles according to their performance indicator statistics.

Indicator

Profile 1 (n¼ 226) Profile 2 (n¼ 202) Profile 3 (n¼ 131) Overall (n¼ 559)

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

LAND_PROD
(e/ha)

523.5 b 4.521 816.7 c 30.92 251.8 a 6.026 565.6 13.70

ROA (%) 8.437 a 0.363 16.92 b 0.889 8.041 a 0.534 11.41 0.394
VIABILITY

(dimensionless)
0.777 b 0.035 1.798 c 0.074 0.475 a 0.036 1.074 0.037

SDI
(dimensionless)

0.867 b 0.014 0.719 a 0.021 0.760 a 0.021 0.789 0.010

GHG_EM
(kg CO2e/ha)

299.9 b 4.117 310.2 b 10.79 187.3 a 6.090 277.2 4.738

Profile size 0.405 b 0.024 0.361 b 0.025 0.235 a 0.019

Note: Superscript letters show significant differences between the mean of the performance indicators
among profiles. Differences are shown at the 5% level, with shared letters indicating no statistically
significant difference, using the Wald test for pairwise comparisons.
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for each profile. Synergies (trade-offs) are found when a beneficial impact on a given
indicator involves a beneficial (detrimental) impact on another indicator (Kanter et al.
2018). These beneficial or detrimental impacts are assessed by considering the signs of
the covariance values (positive or negative) and the polarity of the performance indica-
tors. That is, a higher indicator value can mean either a better (LAND_PRO, ROA,
VIABILITY, and SDI) or a worse (GHG_EM) farm performance, as pointed out in the
following paragraphs.

One pattern shared by all profiles is that there are statistically significant positive
covariances suggesting synergies between ROA and VIABILITY. However, there are
differences between profiles in other significant covariances.

For instance, synergies between other economic performance indicators are only
found in Profile 2 (positive significant covariance between LAND_PROD and
VIABILITY) and Profile 3 (positive significant covariates between LAND_PROD and
ROA and between LAND_PROD and VIABILITY). Similarly, synergistic relation-
ships are shown between environmental performance indicators for Profile 1 and
Profile 3 (negative significant covariances between SDI and GHG_EM). However, in
the case of Profile 2, the positive significant covariance between GHG_EM and SDI
suggests a trade-off between these two indicators.

There are also interesting differences among profiles regarding covariances
between economic and environmental indicators. In the case of Profile 1, there is no
significant relationship between ROA and the two environmental indicators, but for the
VIABILITY indicator, significant synergistic relationships are found with SDI (posi-
tive significant covariance) and GHG_EM (negative significant covariance). In the
case of Profile 2, there are trade-offs between SDI and the three economic perform-
ance indicators (negative significant covariances). Moreover, despite the trade-off evi-
denced by the positive significant covariance between farm productivity (LAND_
PROD) and carbon emissions (GHG_EM), Profile 2 shows synergistic relationships
between farm profitability (ROA) and GHG_EM (negative significant covariances).
Finally, in the case of Profile 3, although LAND_PROD and GHG_EM also show a

Table 5. Variance-covariance matrices for the three-profile solution LPA model.

LAND_PROD ROA VIABILITY SDI GHG_EM

Profile 1 LAND_PROD 3,493���
ROA 29.50 24.53���
VIABILITY −0.10 1.52��� 0.19���
SDI −1.70� 0.07 0.01� 0.04���
GHG_EM 364.5 −22.59 −6.74��� −3.19��� 3,086���

Profile 2 LAND_PROD 155,450���
ROA 190.1 143.9���
VIABILITY 82.3�� 4.19��� 0.92���
SDI −16.20� −1.07��� −0.05�� 0.07���
GHG_EM 26,070��� −442.5��� −1.40 5.38� 21,792���

Profile 3 LAND_PROD 4,000���
ROA 150.8��� 33.31���
VIABILITY 7.22�� 1.67��� 0.14���
SDI −1.28 0.22� 0.02�� 0.05���
GHG_EM 1,674��� −35.17 −6.80�� −3.99�� 4,012���

Note: ���, ��, and � indicate statistical significance at 0.1%, 1%, 5%, respectively.
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trade-off relationship (positive significant covariance), significant synergies are found
between ROA and SDI (positive significant covariance), and between VIABILITY and
the two environmental indicators (positive significant covariance for SDI and negative
significant covariances for GHG_EM).

Table 6 shows the linear regression coefficients (bx, y ¼ dY=dX ) for every pair of indi-
cators in each farm profile.8 These coefficients can be compared across profiles to assess
which one has the lowest trade-offs or the highest synergistic relationships. For instance,
this information indicates that the objective of reducing GHG emissions (GHG_EM) can
be achieved in Profile 2 and Profile 3 alongside a decrease in production (LAND_PROD).
However, the decrease in production per unit of pollution avoided is lower in the case of
Profile 3. In any case, it is also true that a reduction in farms’ emissions potential (GHG_
EM) in the case of Profiles 1 and 3 has no cost in profitability terms (ROA) and even
involves synergistic relationships regarding farms’ viability (VIABILITY). Likewise, it is
worth noting that in the case of Profile 2, although production reduction trade-offs are the
highest, a reduction in GHG_EM would lead to an increase in profitability (ROA) and no
significant impacts on farms’ viability (VIABILITY). Moreover, carbon emissions (GHG_
EM) could also be reduced through an increase in farm biodiversity (SDI) in Profile 1 and
Profile 3, although not in the case of Profile 2.

Similarly, it can be observed that an increase in farmland biodiversity (SDI) can be
achieved in Profile 3 at no cost in terms of economic performance (no significant or
synergistic relationships found), while it would involve a slight decrease in farm prod-
uctivity (LAND_PROD) in Profile 1. In any case, SDI shows synergistic relationships
with economic indicators in Profile 1 (VIABILITY) and Profile 3 (ROA and
VIABILITY). However, in the case of Profile 2, increasing SDI would involve a
decrease in farm productivity (LAND_PROD), profitability (ROA), and viability
(VIABILITY).

Table 6. Linear regression coefficients (bx, y) for the combination of indicators X and Y in each
profile.

Indicator Y
Indicator X

LAND_PROD ROA VIABILITY SDI GHG_EM

Profile 1 LAND_PROD
ROA 0.0084
VIABILITY −0.0000 0.0618���
SDI −0.0005� 0.0028 0.0681�
GHG_EM 0.1044 −0.9206 −34.7671��� −87.51���

Profile 2 LAND_PROD
ROA 0.0012
VIABILITY 0.0005�� 0.0291���
SDI −0.0001� −0.0074��� −0.0560��
GHG_EM 0.1677��� −3.0742��� −1.5173 71.83�

Profile 3 LAND_PROD
ROA 0.0377���
VIABILITY 0.0018��� 0.0500���
SDI −0.0003 0.0067� 0.1678���
GHG_EM 0.4187��� −1.0559 −47.9112�� −76.48��

Note: ���, ��, and � indicate statistical significance at 0.1%, 1%, 5%, respectively.
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5.4. Factors explaining farm profiles’ membership

Implementing the three-step approach allowed us to relate the profile membership to
policy-relevant covariates. Table 7 shows the final set of covariates included in the
model achieved after running the backward stepwise procedure. The model shows an
acceptable goodness-of-fit, since the included covariates explain a substantial portion
of the variability in class membership (Pseudo-R2 ¼ 0.608).9

First, it should be noted that all covariates related to farmers’ characteristics (i.e.
AGE, GENDER, TRAIN, and FULL_FARM), all CAP subsidies other than decoupled
payment (ENV_SUB and OTHER_2P) and one farms’ resources covariate (DEBT)
turned out to be non-statistically significant and were therefore eliminated from the
final model. The signs of the coefficients obtained and their magnitude indicate the
effect of each covariate on the probability that a farm is included in a profile, relative
to Profile 3, which was taken as the reference profile. Thus, a positive (negative) coef-
ficient indicates a higher (lower) probability of membership in a profile relative to
Profile 3. For example, regarding REG_CYL, the positive coefficient for Profile 1
indicates a higher probability that a farm located in this region belongs to this profile,
while the negative coefficient for Profile 2 indicates the opposite. Consequently, a
farm located in Castilla y Le�on (REG_CYL ¼ 1) has, ceteris paribus, a higher prob-
ability of belonging to Profile 1 and a lower probability of belonging to Profile 2, with
Profile 3 showing an intermediate membership probability.

Farm membership in Profile 2 (economically sustainable farms), compared to
membership in Profile 3 (climate-sustainable farms), is positively influenced by higher
decoupled payments per hectare (DEC_PAY) and a higher level of outsourcing
(OUTSOURC). However, those farmers with a higher share of owned land (OWN_
LAND) are less likely to be included in this profile. Meanwhile, farm membership in
Profile 1 (mixed performance farms), compared to membership in Profile 3, is posi-
tively influenced by higher shares of non-land fixed assets (NL_FASSET). In addition,
the model indicates that farms with less total farm area (F_AREA), a lower share of
owned land (OWN_LAND), located in less favored areas (LFA), and a lower share of
labor input hours (LABOR_H) are more likely to belong to Profile 1.

Profile membership is also related to the regions where sample farms are located.
Compared to Profile 3, farms located in Castilla y Le�on (REG_CYL ¼ 1) have a
higher probability of being included in Profile 1 and a lower probability of being
included in Profile 2. Those operating in Castilla-La Mancha (REG_CLM ¼ 1) are
more likely to be included in Profile 1. Finally, farms located in Andalucia (REG_
AND ¼ 1) have a much lower probability of being included in Profile 1.

6. Discussion and concluding remarks

The case study conducted here provides evidence that the methodological proposal for
building a policy-oriented farm typology can be empirically implemented, resulting in
categories of farms that are similar in terms of economic and environmental perform-
ance. Consequently, this new farm typology-building approach can significantly
improve the understanding of agricultural systems, in turn helping to support policy
analysis and decision-making by identifying the specific policy interventions needed
(i.e. differentiated by farm profiles). Moreover, the quantitative methods used to esti-
mate synergies/trade-offs among the different performance indicators within each
group of farms identified (analyzed by means of variance-covariance matrices) and the
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characterization of the different farm profiles according to their specific characteristics
(three-step procedure) are worth commenting as an interesting methodological contri-
bution to the existing literature (Kanter et al. 2018).

However, prior to translating the results obtained into guidelines for policy analysis
and the design of new instruments, two methodological issues should be acknowledged
regarding the interpretation of observed synergies/trade-off relationships (see
Schaafsma and Bartkowski 2020). The first one is that synergy/trade-off relationships
based on time- and spatial-specific statistical covariances between performance indica-
tors do not necessarily demonstrate the existence of stable or causal relationships. The
second one is that the observed synergy/trade-off relationships are shaped by farm
inefficiencies in resource use (i.e. farms’ position relative to the production possibility
frontier, PPF). Thus, it could be argued that observed synergies simply point to the
possibility of eliminating these inefficiencies. These general limitations in assessing
synergies and trade-offs also apply to this specific case, necessitating a cautious inter-
pretation of the results obtained. In any case, it has been assumed that observed cova-
riances still provide valuable insights for analyzing potential synergy/trade-off
relationships in farm performance, since they give us information about the covarian-
ces of actual indicators, which can be used to predict the direction of the relationships
between them (Breure et al. 2024).

Bearing in mind that the main challenge of agricultural policy is improving farms’
environmental performance while ensuring their economic sustainability, the results
yielded by the proposed methodological approach can be used to evaluate the applica-
tion of current agricultural policies and to enhance agricultural policy tailoring, allow-
ing the design of policy instruments to be fine-tuned to harness potential synergies/
trade-offs across farm profiles. Moreover, these results can also help to improve

Table 7. Results of the three-step procedure to estimate the effect of latent profile predictors
using profile 3 as reference profile.

Covariate

Profile 1 Profile 2 Profile 3

WaldCoef. S.E. Coef. S.E. Coef. S.E.

Intercept 0.076 a 1.785 0.665 a 1.199 . a . 0.401
F_AREA −0.014 a 0.004 0.004 b 0.002 . b . 20.279���
DEC_PAY −0.001 a 0.003 0.015 b 0.003 . a . 27.642���
OWN_LAND −0.051 a 0.010 −0.048 a 0.012 . b . 27.121���
REG_AND ¼ 1 −3.929 a 0.993 −0.189 b 0.557 . b . 20.248���
REG_CYL ¼ 1 3.657 c 0.792 −3.346 a 0.774 . b . 84.335���
REG_CLM ¼ 1 3.725 b 0.802 1.056 a 0.486 . a . 21.563���
LFA ¼ 1 2.806 b 0.916 −1.153 a 0.746 . a . 21.663���
NL_FASSET 0.003 b 0.001 0.003 a,b 0.001 . a . 7.007�
OUTSOURC 0.015 a,b 0.011 0.025 b 0.006 . a . 15.277���
LABOR_H −0.036 a 0.014 0.021 b 0.014 . b . 12.278��
Goodness-of-fit
LL −333.63
BIC 806.44
Pseudo-R2 0.608

Note: The Wald test in the last column refers to the entire row, with significant values indicating that at
least one coefficient for that variable differs from 0. Letters in italics show the results of the pairwise
comparisons among profiles also implemented using the Wald test. Differences are shown at the 5% level,
with shared letters indicating no statistically significant difference.
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agricultural policy targeting by focusing differentiated policy instruments on the farms
that are more likely to belong to each profile according to their specific structural fea-
tures and farmers’ socio-demographic characteristics. The empirical case study ana-
lyzed in this paper is illustrative in this sense, as explained below.

For instance, the results show that higher decoupled payments increase the prob-
ability of belonging to the economically sustainable profile of farms. This suggests
that decoupled payments have achieved the objective of ensuring viable farm income.
On the contrary, environmental subsidies and other pillar two payments are non-sig-
nificant when it comes to farm profiling, which might indicate that these schemes did
not fulfill any specific objective in the Spanish rain-fed field crops agricultural system.
This suggests the need to improve their design to enhance environmental and eco-
nomic development in this agricultural system. In this regard, the changes introduced
in the 2023–2027 CAP, especially its new green payments architecture, could be
expected to improve the tailoring of these instruments and enhance their impact in
terms of the efficient achievement of environmental sustainability. However, this
hypothesis should be tested once information from 2023 onward becomes available.

In any case, decoupled payments do not seem to be efficiently allocated in the
Spanish rain-fed field crops agricultural system, given the heterogeneity in farms’ prof-
itability and viability. In this case study, redistributing the total direct payment enve-
lope could make sense, since reducing the higher payments granted to Profile 2 farms
(those with the highest productivity levels) would not jeopardize their economic sus-
tainability, but it would enable an increase in the lower payments received by farms in
Profile 3 (climate-sustainable farms with the lowest productivity levels), in an effort to
boost their profitability and viability levels. In this regard, the three-step approach
helps to identify key structural characteristics of farms related to profile membership,
such as the region in which the farm is located, its LFA status, or its physical size.
Using these characteristics to distribute decoupled payments could contribute to a
more efficient distribution of these payments in this agricultural system, helping to cre-
ate a new balance between economic and environmental performance that would
enhance social welfare.

Similarly, the results obtained could be used to fine-tune the design of agricultural
income taxation. In Spain, this tax is levied on the basis of a flat-rate scheme estimating
agricultural net income as a percentage (tax rate) of farmers’ revenues (sales plus direct
payments). Thus, the farm typology built could also be used to establish differentiated
tax rates depending on the farms’ profile. Some economic characteristics of the farms
related to profile membership, such as outsourcing or non-land assets, could be helpful
in this regard. This would allow for the introduction of specific deductions, taxes, or
exemptions to align fiscal policy with the general objectives of the agricultural policy.

The results obtained for rain-fed field crops in Spain could also support the
improvement of the agri-environmental policy implemented within this agricultural
system. This study suggests that agri-environmental policy could be reinforced for
farms belonging to Profiles 1 and 3 to improve their environmental performance fur-
ther, as the trade-offs between economic and environmental performance in these pro-
files are lower than in Profile 2. This would make it possible to generate greater
environmental benefits at a lower economic cost (i.e. lower payment requirements). As
a result, the redirection of policy support toward more diversified farms—for example,
through the new eco-schemes—could be a good way to bolster both the economic and
environmental performance of these types of farms. These measures should focus on
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farms whose structural characteristics (e.g. region, LFA status, or farm area) make
them more likely to belong to such profiles. In the event that environmental objectives
were not achieved by focusing only on Profiles 1 and 3, higher payments for Profile 2
might be necessary, taking into account the higher opportunity costs for this profile
(i.e. higher trade-off relationships between economic and environmental performance
indicators).

GHG emissions reduction does not seem to affect farm profitability and viability,
as no significant trade-offs are found in any of the profiles. This suggests that it may
not be necessary to economically compensate farmers for cutting emissions. Instead,
using compulsory measures (such as enhanced conditionality) could be an efficient
way to achieve these reductions. However, it should be noted that both the profile def-
inition and the trade-off and synergies analysis suggest that the reduction of GHG
emissions in the rain-fed field crops system would come at the expense of productivity
(i.e. food supply). On a larger scale, this could negatively impact global food markets
and food security and, ultimately, could lead to production reallocation (i.e. increased
food production in other countries driven by lower production costs and less stringent
legal constraints), jeopardizing the objective of reducing GHG emissions at a global
level. In this regard, in order to reduce GHG emissions while having the smallest pos-
sible impact on farms’ productivity, profitability, and viability, it is suggested that
greater efforts (e.g. higher environmental payments) should be focused on less inten-
sive farms (Profiles 1 and 3) since the implementation of agri-environmental policy
instruments in these farms is more efficient than in Profile 2.

Finally, it should be noted that this proposal of a new policy-oriented farm typ-
ology and the analysis of its outcomes is not free of limitations. The most noteworthy
one is probably the limited suitability of the environmental indicators built, given the
lack of detailed environmental information in the FADN/RECAN microdata. This con-
straint calls for careful handling of the conclusions and policy recommendations
derived from the analysis. Nonetheless, many of these data limitations may be solved
in the near future with the upgrade of the FADN into the Farm Sustainability Data
Network (FSDN), which will provide more data on farm-level environmental perform-
ance and will allow more accurate and robust ecological indicators to be calculated.
For instance, this update will make it possible to access information about farm per-
formance regarding the presence of high natural value areas and the biocide potential
of the agrochemical used (relating to biodiversity), soil management practices (con-
cerning soil functionality), or nutrient balances (linked to pollution emissions). This
additional information will be available from 2026, when microdata gathered from the
2025 farm sample are to be published.

The second potential drawback that is also worth mentioning is the static nature of
the typology proposed. Profile sizes, synergies/trade-off estimates, and farm character-
istics in each profile are obtained using recent data, reflecting the situation at a specific
time in the past. However, the economic, technological, or policy changes affecting
the farm population mean that any farm typology should be considered a dynamic
classification evolving over the years. This calls for ongoing updates of farm typolo-
gies to account for these changes in profile membership. Likewise, further research
analyzing individual farms’ longitudinal data, employing suitable statistical methods
such as Latent Class Growth Analysis (LCGA) or Latent Transition Analysis (LTA),
could be of interest to assess groups of farms that display similar economic and envir-
onmental performance evolution patterns.
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Finally, it should be noted that using farm types or profiles as target groups to
design and implement differentiated policy instruments is challenging, as it raises
issues about perceived fairness and legitimacy that could reduce their acceptance
among farmers (Huber et al. 2024). Accordingly, the contributions of this typology-
building approach to assist policy design and implementation should be complemented
with further research focused on differentiating farmers’ attitudes, opinions, and behav-
ior across profiles (Dessart, Barreiro-Hurl�e, and van Bavel 2019). This sort of empir-
ical study might help to identify which policy instruments are more suitable for
implementation among the different profiles, considering the objectives to be achieved,
their expected efficiency and efficacy of the instruments, and their understanding and
acceptance by targeted farmers.

Notes
1. In any case, qualitative criteria related to parsimony and interpretability of the results also

need to be met, which reproduces some of the discretionary problems associated with
traditional clustering techniques.

2. According to Spurk et al. (2020), a sample size above 500 individuals is large enough for
an LPA model. Therefore, the sample size of 559 farms is considered to be adequate for
this research.

3. To calculate the opportunity cost of land (OCland), the farm’s owned area was multiplied by
the annual regional rental fee for rain-fed cropland based on official statistics. The
opportunity cost of unpaid labor (OClabor) was estimated as the product of this labor input
and the mean annual wage paid for labor in the RECAN sample used for the analysis. To
calculate the opportunity cost of non-land assets provided by the farmers (OCnon-land assets),
the value of these assets was multiplied by the annual interest rate of 10-year Spanish
government bonds.

4. RECAN provides data about the amount of nitrogen, phosphorus, and potassium in mineral
fertilizers. Thus, for nitrogen in mineral fertilizers, the AIi value reported by RECAN code
SE296 was used directly in expression (1).

5. It should be noted that the direct payments system applied in Spain in the period 2015-2022
still presented a strong link with historical payments, which implies large differences
between farmers in direct payments per hectare.

6. The one-step approach is simply the estimation of the LPA model simultaneously including
the covariates. However, using the one-step approach would mean the that farms would be
classified not only according to their economic and environmental performance, which was
the objective of our paper, but also their characteristics as defined by the covariates.

7. In order to increase the replicability of the analysis, the code used for modeling the LPA
with the Syntax version of Latent GOLD 6.0 has been included in Appendix C (included as
supplementary material).

8. Concerning the linear relationship between each pair of performance indicators, it is also
worth pointing out that the LPA model we run can also provide the correlation coefficients
between them for each profile. These correlation coefficients are shown In Appendix E
(included as supplementary material).

9. The pseudo-R2 in this LPA model is an estimation of the reduction of errors associated with
the inclusion of covariates (Vermunt and Magidson 2016). Thus, the closer to 1 (i.e. 100%
of the error reduced by the inclusion of covariates), the better. It does not indicate the
percentage of variance explained, as the R2 in ordinary least squares (OLS) regressions
does.
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