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State of the Union
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Current Approaches Are

Metric-Focussed

Not used by developers
(Method Name Prediction, anyone?)

» Taillor-made when actually used

(Test-Generation @ Facebook)

Made for academic publications



Current Metrics

Broad Applicable Metric = Wide Adoption (F1 Score, BLEU)

Thousands of strange Variations (CodeBLEU, BLEURT, MRR)

S =

Acceptance of Metrics is seen as a proxy for acceptance of models!




BLEU - Definition

N
BLEU = BP x exp (Z wy, log pn)
n=1

Brevity Penalty - 2 “Studies” on Human
Acceptance (For Translation)
Supports Multiple References
Handful Reports on
Supports Multiple N-Gram N’s Human Interaction



BLEU In Particular

[Ab]Used outside tested Domain
(Generation Tasks, etc.)

Noise-Baseline by Stop-Words

SOTA Models
worse than random texts [1]

[1] https://conf.researchr.org/details/icse-2022/icse-2022-posters/14/CrystalBLEU-Precisely-and-Efficiently-Measuring-the-Similarity-of-Code
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Farm more Data from Github Cu rre nt Pa per FaCtory

(No-Brainer, keep same methods)

' Add Filters to Data

- Learning on e.g.
\.’ Perplexity
v

N—

Hyper-Parameter-
Tuning

Apply ML Progress Hyper-Parameter-

(new BERT) _QTU“iﬂg

Metric Survey

»

General Data General Specific Metrics Task-Specific twea
(Github Corpus) g Model Model
Slice the Salame ! Reviewend hate this tnick!

Apply ML P
Hyper-Parameter- pFZr?evv BEI;{O%ress

Tuning Add Filters to Data

‘.ndustry Pulicatio

Specific Data Application

(e.g. Code-Docu mentatior),

Tool Paper

Meta-Survey

Farm more Data from Github New, super niche dataset no-one else can use
(Bonus: Re-use yourself next time, calling it

(No-Brainer, keep same methods) O T —

s Good for your Career, U & Funding!



Analysis of content, and of
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A Change of Hearts
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What We Need
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Re-Usable (not only reproducible) Tools

Real world Feedback (=Humans)

High Quality, not High Quantity
(For Data, Models, Papers, Studies)




Proposed Pipeline

Federated
Learning
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General Data Proto
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Wanted Features
WISENS & Requirements Individual Online Learning Report on Acceptance
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What We Have

Requirements Engineering:
Find out what really matters & prioritise

Reinforcement Learning:
Teach a model “on the fly”

Federated Learning:
Join efforts from all participants back into on model

Re-Usable & Safe Tools:

Self-Host with Containers, Contribute only what you want
Provide life-examples on a webserver
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Thank You!
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