

Faculty of Engineering

Generating Complex Metamorphic Relations for Cyber-Physical Systems with Genetic Programming

Jon Ayerdi*, Valerio Terragni †, Aitor Arrieta*, Paolo Tonella ‡ and Maite Arratibel §

University of Mondragon*, University of Auckland †, Università della Svizzera italiana (USI) ‡, Orona §

jayerdi@mondragon.edu

- Leading elevator company in Europe
- Design, manufacturing, installation and maintenance of:
 - Elevators
 - Escalators
 - Moving ramps
 - ...
- Multi-elevator installations

Software maintenance process

- New releases take an average of around a year to complete this process
- Many of these steps are **not fully automated**
- Notably, major reliance on human test oracles

Metamorphic Testing

- Based on the relations among the inputs and outputs of two or more test executions, the so called metamorphic relations (MRs)
- MRs for the domain of elevation already defined in our previous work [1]

[1] Ayerdi et al. QoS-aware Metamorphic Testing: An Elevation Case Study. ISSRE 2020.

Automatic generation of MRs

- MRs have been proven effective
- Manual definition of MRs can be **costly and error-prone**
 - Requires in-depth knowledge of the domain and the system
- Build on top of GAssert, a technique for automatically generating and improving program assertions [1]

GAssertMRs, Genetic ASSERTion improvement for MRs [2]

[1] Terragni et al. Improving Assertion Oracles with Evolutionary Computation. ESEC/FSE 2020.[2] Ayerdi et al. Generating Metamorphic Relations for Cyber-Physical Systems with Genetic Programming: an Industrial Case Study. ESEC/FSE 2021.

Evolutionary Algorithm

- Fitness for MRs: Minimize **FPs**, **FNs** and **complexity**
 - Usually evaluated with **mutation testing**
 - Real failures could be used if available
- Template for performance/QoS related MRs:
 - <METRIC_f> <operator> <expression>
 - $AWT_f \leq AWT_s + 5$
- Only the <expression> part is generated by GAssertMRs
 - Reduced search space
 - MRs are easier to understand by humans

Genetic Programming

- Individuals represented as expression trees
- Expressions can contain operators, variables and constants
 - Operators: Arithmetic (+, /, ...), relational (<, =, ...) or logical (AND, OR, ...)
 - Variables: System inputs or outputs
 - Constants: Numeric (-100, 100) or Boolean (true/false)

 $AWT_f \leq AWT_s + 6$

Evaluation – Elevator Installations (Orona)

QoS Measures

- QoS metrics
 - Average Waiting Time (AWT)
 - Total Distance (TD)
 - Total Movements (TM)
- Evaluation
 - Configurations: Try every QoS metric and operator (> or <) combination
 - Learning process took 15 mins for each configuration

Evaluation – Experimental Results

- GAssertMRs results in almost zero FPs
- Outperforms manual MRs in several configurations
- Outperforms regular
 assertions except for one
 configuration

Future Extension – Complex Types

 $[(5,4), (5,2)] \rightarrow [1,3] \rightarrow 4$

Mondragon Unibertsitatea

Faculty of Engineering

Thank you

Jon Ayerdi jayerdi@mondragon.edu