
Generating Complex 

Metamorphic Relations for

Cyber-Physical Systems with 

Genetic Programming

Jon Ayerdi∗, Valerio Terragni †, Aitor Arrieta∗,

Paolo Tonella ‡ and Maite Arratibel §

University of Mondragon∗, University of Auckland †,

Università della Svizzera italiana (USI) ‡, Orona §

jayerdi@mondragon.edu



Orona

2

• Leading elevator company in Europe

• Design, manufacturing, installation and maintenance of:

• Elevators

• Escalators

• Moving ramps

• …

• Multi-elevator installations



Software maintenance process

• New releases take an average of around a year to complete this process

• Many of these steps are not fully automated

• Notably, major reliance on human test oracles

3

• Analysis
• Development
• Testing

• HW Configuration
• Deployment
• Testing

• Deployment
• Operation
• Monitoring

Requirements

SiL HiL Operation



Metamorphic Testing

4

• Based on the relations 

among the inputs and 

outputs of two or more test 

executions, the so called 

metamorphic relations (MRs)

• MRs for the domain of 

elevation already defined in 

our previous work [1]

[1] Ayerdi et al. QoS-aware Metamorphic Testing: An Elevation Case Study. ISSRE 2020.

Ef = Es ∪ E' => AWTf < AWTs



Automatic generation of MRs

5

• MRs have been proven effective

• Manual definition of MRs can be costly and error-prone

− Requires in-depth knowledge of the domain and the system

• Build on top of GAssert, a technique for automatically
generating and improving program assertions [1]

[1] Terragni et al. Improving Assertion Oracles with Evolutionary Computation. ESEC/FSE 2020.

[2] Ayerdi et al. Generating Metamorphic Relations for Cyber-Physical Systems with Genetic 

Programming: an Industrial Case Study. ESEC/FSE 2021.

GAssertMRs, Genetic ASSERTion improvement for MRs [2]



Evolutionary Algorithm

• Fitness for MRs: Minimize FPs, FNs and complexity

• Usually evaluated with mutation testing

• Real failures could be used if available

• Template for performance/QoS related MRs:

− <METRICf> <operator> <expression>

− AWTf ≤ AWTs + 5

• Only the <expression> part is generated by GAssertMRs

• Reduced search space

• MRs are easier to understand by humans

6



Genetic Programming

• Individuals represented as expression trees

• Expressions can contain operators, variables and constants

• Operators: Arithmetic (+, /, …), relational (<, =, …) or logical (AND, OR, …)

• Variables: System inputs or outputs

• Constants: Numeric (-100, 100) or Boolean (true/false)

7

+

≤

AWTf AWTs 5

+

≤

AWTf AWTs 6

Mutation

AWTf ≤ AWTs + 5 AWTf ≤ AWTs + 6



Evaluation – Elevator Installations (Orona)

• QoS metrics
• Average Waiting Time (AWT)

• Total Distance (TD)

• Total Movements (TM)

• Evaluation
• Configurations: Try every QoS metric and operator (> or <) combination

• Learning process took 15 mins for each configuration

8

Elevators Installation
(Dispatcher)

Passengers
(Time, Source, Destination)

Elevators
(Initial position)

QoS Measures



Evaluation – Experimental Results

9

Mutation Score

• GAssertMRs results in 

almost zero FPs

• Outperforms manual 

MRs in several 

configurations

• Outperforms regular 

assertions except for one 

configuration

Failure Detecion Ratio



Future Extension – Complex Types

10

sum(map([(es, ef)]{abs(es − ef)}, zip(Es, Ef)))

positionsDistance(Es, Ef)

• Use functional programming 
techniques to enable the manipulation of 
collections

• Function literals

• Higher order functions

[(5,4), (5,2)] → [1,3] → 4



Jon Ayerdi
jayerdi@mondragon.edu

Thank you


