

SmartTLC: Towards Smart Traffic Light Systems

<u>José R. Lozano-Pinilla</u>

C. Vicente-Chicote

joserralp@unex.es

cristinav@unex.es

International Summer School on Search- and Machine Learning-based Software Engineering

June 22-24, 2022 - Córdoba, Spain

QUERCUS

Problem statement

2 Million Children May Suffer From Asthma Every Year Due To Traffic Pollution: Study

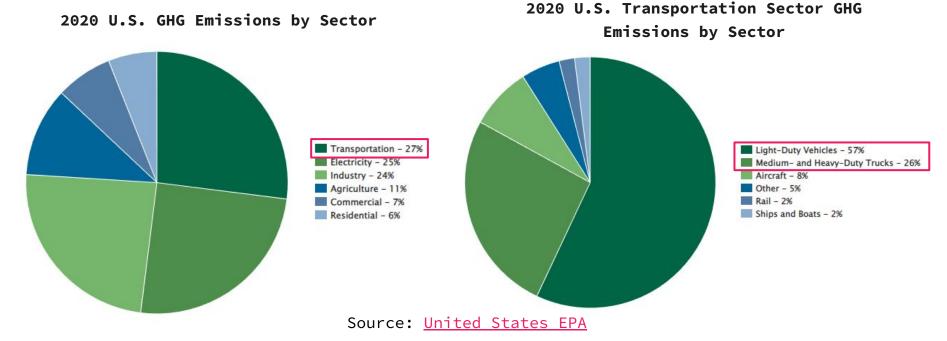
Source: <u>News 18</u>

EU looks to data and technology to reduce transport emissions

Source: Pinsent Masons

Experts say reduced traffic volumes amid Covid-19 have had a positive impact on air quality

Source: <u>IOL</u>


Majority support tighter EU car emissions rules and are willing to pay

Source: Transport & Environment

Intelligent Transportation Systems Market size worth \$ 96.68 Billion, Globally, by 2030 at 6.7% CAGR: Verified Market Research®

3

Problem statement

UERCUS

4

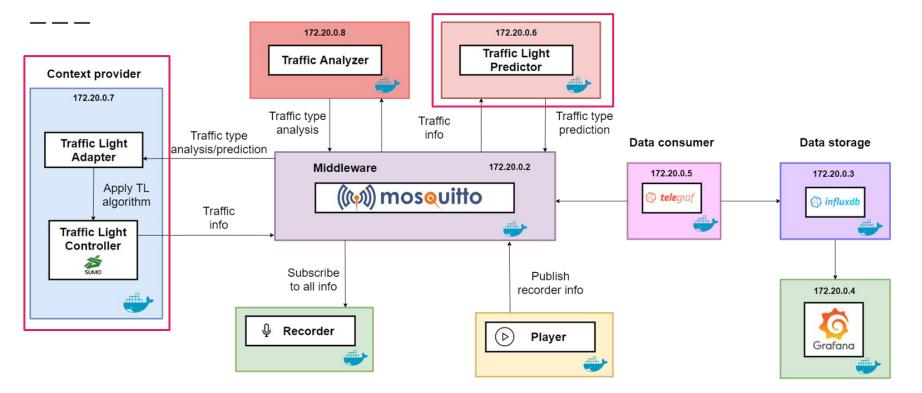
Analyze traffic light control algorithms

Predict traffic flow patterns based on historical data

Develop a framework to compare traffic light adaptation approaches in terms of vehicle waiting time

Detect current traffic flows based on real-time contextual data

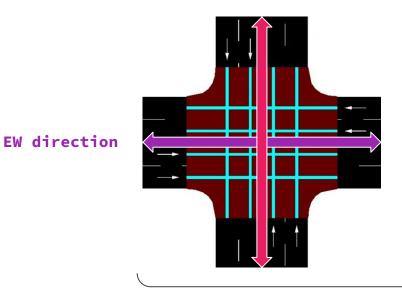
Analyze and compare simulation results with different adaptation approaches



Identify traffic flow patterns

QUERCU:

SmartTLC architecture

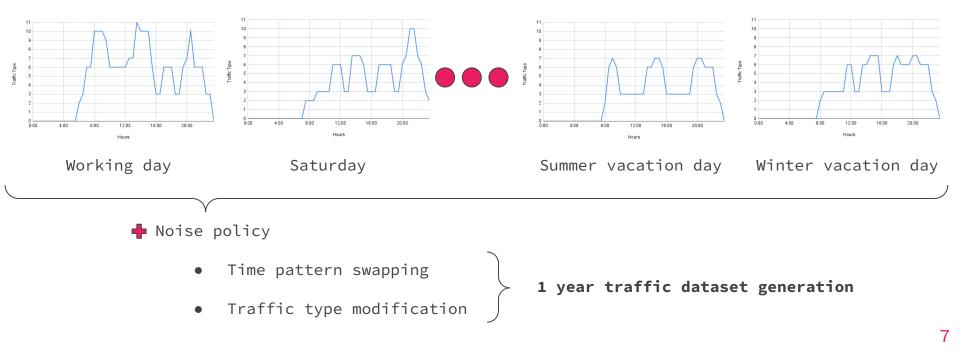

Data visualization

OUERCU!

|

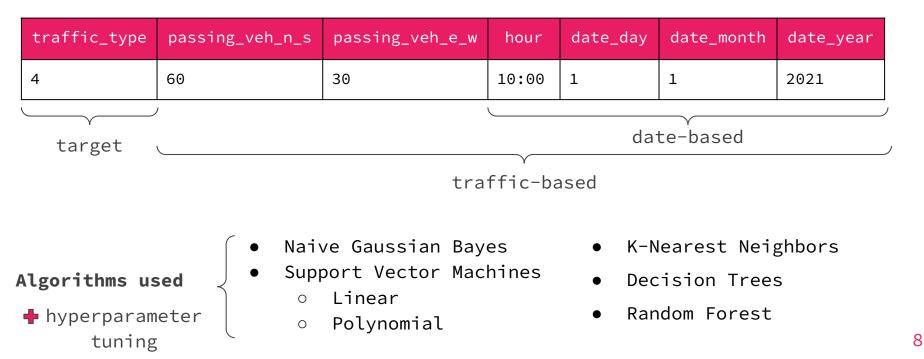
Scenario

NS direction


Туре	Vehicles per hour	Range	
Very Low	3	±2	
Low	20	±6	
Medium	150	±45	
High	500	±150	

Combination = 12 traffic flows

Learning traffic patterns


Simulation based on self-defined traffic time patterns

Learning traffic patterns

Supervised learning

Results

Training process

Average

204 models

Model	Date-based		Date+Traffic-based	
	Elapsed time	F1 score	Elapsed time	F1 score
Naïve bayes	0.030150	0.143621	0.007067	0.997105
SVM linear	8.087447	0.148330	0.062826	0.999649
SVM polynomial 2	9.386143	0.059206	4.466585	0.630051
KNN	0.302031	0.296457	0.313135	0.999621
Decision Tree	0.011950	0.488837	0.009619	0.887136
Random Forest	0.048436	0.216213	0.042495	0.618791

Best date-based

Decision Tree (16 depth) F1 score = 0.692461

Best context-based

Decision Tree (6 depth) F1 score = 0.999881

KNN = F1 score but higher elapsed time

10

Results

Traffic light adaptation process

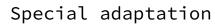
Four adaptation approaches

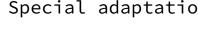
No adaptation

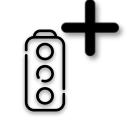
Using working day pattern

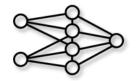
Only predictions based on date

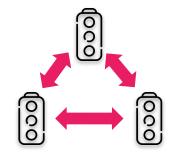
Both analyzer and contextual predictor








Future works



Traffic type

QUERCUS

Thank you!

Any question?