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browse Find venues within a given area. Unlike the checkin intent, browse searches an entire
region instead of only finding venues closest to a point. A region to search can be defined
by including either the 11 and |radius parameters, or the sw and ne . The region will be
FOURSQUARE circular if you include the Il and radius parameters, or a bounding box if you include the sw
and ne parameters.
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Evaluation

RQ1: How effective is this approach in generating valid requests
compared to a random testing baseline?

RQ2: What is the fault-detection capability of this approach
compared to a random testing baseline?
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RQ1

Evaluation

RQ1: How effective is this approach in generating valid requests

compared to a random testing baseline?

Valid requests (%)
Service

Random testing | AL-driven testing
GitHub 62.1 98.7
Stripe-CC 13.7 97.4
Stripe-CP 55.8 99.3
Yelp 44.2 83.7
YouTube-GCT 13.4 85.0
YouTube-VID 25.3 99.0
YouTube-SRC 3.0 89.2
Mean 31.3 93.2

The ratio of valid requests obtained is 93%, three times more than
random testing baseline (31%).
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Evaluation

RQ2: What is the fault-detection capability of this approach

compared to a random testing baseline?

Specification Faults
Service

Random testing | AL-driven testing
GitHub 313 1159
Stripe-CC 0 0
Stripe-CP 104 284
Yelp 29 60
YouTube-GCT 0 262
YouTube-VID 45 442
YouTube-SRC 30 742
Mean 74 421

The number of faults detected is 421, more than five times the faults

detected with random testing baseline (74).

SCORE
Context
= REST APIs
= Dependencies
=  ML-based
prediction of
requests
validity
Problem
Approach
=  Example
Evaluation
= Pl1
= PI2

Future Work

14



Future Work

Human-readable
dependencies inference

IF type=="private’ THEN NOT visibility==all’;

IF-type=<public THEN visibility; ZeroOrOne(type, visibility)
IF type=="public’ THEN NOT visibility=="private’;
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videoDuration string
The videoDuration parameter filters video search results based on their
duration. If you specify a value for this parameter, you must also set the type
parameter’s value to video

You[TH)

custom object

The custom amount to apply to an invoice. If you include a label,

you must include a custom amount

PayPal

browse Find venues within a given area. Unlike the intent  browse searches an entire

region instead of only finding venues ¢ to a point. A region to search can be defined
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private collaborator.owner False

desc all False
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PI2: What is the fault-detection capability of this approach compared
to a fuzzing baseline?

OAS Faults
Service

Random testing | AL-driven testing
GitHub 313 1159
Stripe-CC 0 0
Stripe-CP 104 284
Yelp 29 80
YouTube-GCT 0 262
YouTube-GV 45 442
YouTube-S 30 742
Mean 74 421

The number of faults detected is 421, more than five times the faults
detected with random testing techniques (74).
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