Active-Learning driven Testing of RESTful web APIs A. Giuliano Mirabella amirabella@us.es SCORE Lab, I3US Institute Universidad de Sevilla #### **Contents** - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### **Contents** - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### **REST APIs** - Context - **REST APIs** - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### **Dependencies** videoDuration string The **videoDuration** parameter filters video search results based on their duration. If you specify a value for this parameter, you must also set the **type** parameter's value to **video**. #### custom object The custom amount to apply to an invoice. If you include a label, you must include a custom amount. browse Find venues within a given area. Unlike the checkin intent, browse searches an entire region instead of only finding venues closest to a point. A region to search can be defined by including either the 11 and radius parameters, or the sw and ne. The region will be circular if you include the II and radius parameters, or a bounding box if you include the sw and ne parameters. - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### Dependencies 98% faulty test cases in - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### Dependencies # Automated test case generation for RESTful APIs with unspecified dependencies - Context - **REST APIs** - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### ML-based prediction of requests validity - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### ML-based prediction of requests validity #### Deep Learning-Based Prediction of Test Input Validity for RESTful APIs A. Giuliano Mirabella SCORE Lab, 13US Institute Universidad de Sevilla Seville, Spain amirabella@us.es Alberto Martin-Lopez SCORE Lab, 13US Institute Universidad de Sevilla Seville, Spain alberto.martin@us.es Sergio Segura SCORE Lab, I3US Institute Universidad de Sevilla Seville, Spain sergiosegura@us.es Luis Valencia-Cabrera SCORE Lab, I3US Institute Universidad de Sevilla Seville, Spain lyalencia@us.es Antonio Ruiz-Cortés SCORE Lab, 13US Institute Universidad de Sevilla Seville, Spain aruiz@us.es International Workshop on Testing for Deep Learning and Deep Learning for Testing, 2021. - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### ML-based prediction of requests validity | | | р | arameters | | | valid | |-------|--------|--------------------|-----------|-----------|---------|-------| | visi | bility | affiliation | direction | sort | type | fault | | all | | | | full_name | all | | | priva | ate | collaborator,owner | | | | | | | | | desc | | all | | | publ | ic | | | full_name | public | | | all | | | | | private | | | publ | ic | owner | desc | updated | | | - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### ML-based prediction of requests validity | | | ра | rameters | | | valid | |-------|--------|--------------------|-----------|-----------|---------|---------| | visib | oility | affiliation | direction | sort | type | fault | | all | | | | full_name | all | Tru | | priva | te | collaborator,owner | | | | Fals | | | | | desc | | all | Fals | | publi | С | | | full_name | public | Tru | | all | | | | | private | Tru | | publi | С | owner | desc | updated | | Fals | | | | | | <u> </u> | | <u></u> | - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work ## Problem - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### Problem - Context - **REST APIs** - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work - Context - **REST APIs** - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### Example ### parameters visibility affiliation direction sort type all full_name all private collaborator,owner desc all all pushed all private public updated owner desc requests #### Context - **REST APIs** - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### Example - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### Example | | | parai | meters | | | class pro | babilities | |---|------------|--------------------|-----------|-----------|---------|----------------------|-----------------------| | | visibility | affiliation | direction | sort | type | valid
probability | faulty
probability | | ı | all | | | full_name | all | 0.7 | 0.3 | | | private | collaborator,owner | | | | 0.1 | 0.9 | | 1 | | | desc | | all | 0.2 | 0.8 | | ı | all | | | pushed | | 0.6 | 0.4 | | ı | all | | | | private | 0.3 | 0.7 | | 1 | public | owner | desc | updated | | 0.2 | 0.8 | requests - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### Example requests - - PI1 - PI2 - **Future Work** Context - **REST APIs** - Dependencies - ML-based prediction of requests validity Example - Problem - Approach - Evaluation #### **Evaluation** **RQ1**: How effective is this approach in generating valid requests compared to a random testing baseline? **RQ2**: What is the fault-detection capability of this approach compared to a random testing baseline? - Context - **REST APIs** - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### **Evaluation** #### RQ1 **RQ1**: How effective is this approach in generating valid requests compared to a random testing baseline? | Comico | Valid requests (%) | | | |-------------|--------------------|-------------------|--| | Service | Random testing | AL-driven testing | | | GitHub | 62.1 | 98.7 | | | Stripe-CC | 13.7 | 97.4 | | | Stripe-CP | 55.8 | 99.3 | | | Yelp | 44.2 | 83.7 | | | YouTube-GCT | 13.4 | 85.0 | | | YouTube-VID | 25.3 | 99.0 | | | YouTube-SRC | 3.0 | 89.2 | | | Mean | 31.3 | 93.2 | | The ratio of valid requests obtained is **93%**, three times more than random testing baseline (31%). - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### **Evaluation** #### RQ2 **RQ2**: What is the fault-detection capability of this approach compared to a random testing baseline? | Comico | Specification Faults | | | | |-------------|----------------------|-------------------|--|--| | Service | Random testing | AL-driven testing | | | | GitHub | 313 | 1159 | | | | Stripe-CC | 0 | 0 | | | | Stripe-CP | 104 | 284 | | | | Yelp | 29 | 60 | | | | YouTube-GCT | 0 | 262 | | | | YouTube-VID | 45 | 442 | | | | YouTube-SRC | 30 | 742 | | | | Mean | 74 | 421 | | | The number of faults detected is **421**, more than five times the faults detected with random testing baseline (74). - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work #### **Future Work** # Human-readable dependencies inference IF type=='private' THEN NOT visibility=='all'; IF type=='public' THEN visibility; IF type=='public' THEN NOT visibility=='private'; ZeroOrOne(type, visibility) - Context - REST APIs - Dependencies - ML-based prediction of requests validity - Problem - Approach - Example - Evaluation - PI1 - PI2 - Future Work PI2: What is the fault-detection capability of this approach compared to a fuzzing baseline? | | OAS Faults | | | |-------------|----------------|-------------------|--| | Service | Random testing | AL-driven testing | | | GitHub | 313 | 1159 | | | Stripe-CC | 0 | 0 | | | Stripe-CP | 104 | 284 | | | Yelp | 29 | 60 | | | YouTube-GCT | 0 | 262 | | | YouTube-GV | 45 | 442 | | | YouTube-S | 30 | 742 | | | Mean | 74 | 421 | | The number of faults detected is **421**, more than five times the faults detected with random testing techniques (74). # Active-Learning driven Testing of RESTful web APIs A. Giuliano Mirabella amirabella@us.es SCORE Lab, I3US Institute Universidad de Sevilla