

International Summer

School on Search- and

Machine Learning-based

Software Engineering

(SMILESENG)

June 22-24, 2022

Córdoba, Spain

Aurora Ramírez and

José Raúl Romero (Eds.)

University of Córdoba

Proceedings of the International Summer
School on Search- and Machine

Learning-based Software Engineering
(SMILESENG)

June 22-24, 2022
Córdoba, Spain

Editors:
Aurora Ramírez

José Raúl Romero

Proceedings of the International Summer School on Search- and Machine Learning-
based Software Engineering - Córdoba: UCOPress. Editorial Universidad de Córdoba,
2022

21x29.7 cm; 74 p.; il. color.
Edited by Aurora Ramírez and José Raúl Romero

Proceedings of the International Summer School on Search- and
Machine Learning-based Software Engineering

© Several authors

© Edited by: Aurora Ramírez and José Raúl Romero

© UCOPress. Editorial Universidad de Córdoba, 2022
Campus de Rabanales. Ctra. Nac. IV, km. 396, 14071 – Córdoba, Spain
http://www.uco.es/ucopress/ — ucopress@uco.es
Phone: (+34) 957 21 21 65

Design and layout: Aurora Ramírez

ISBN: 978-84-9927-704-2

Any form of reproduction in whole or in part, distribution, public
communication or transformation of this work may only be carried out
with the prior written authorization of the owners, unless otherwise

provided by law.

http://www.uco.es/ucopress/

Welcome Note

Optimization and search algorithms applied to software engineering led to the emer-
gence of the area of search-based software engineering (SBSE), which aims to au-
tomate and optimize solutions to complex problems in the daily work of a software
engineer. More recently, machine learning (ML) algorithms have also made it pos-
sible to explore and extract knowledge from various data sources commonly used
in the software development process, such as source code hosted in repositories, de-
velopers’ forums or technical documentation. Whatever the technique applied, the
objective of using Artificial Intelligence (AI) to these problems is to facilitate the
work of developers, analysts, testers or software engineers, improving the quality of
the resulting products while reducing the costs of their production.

This International Summer School on Search- and Machine learning-based Soft-
ware Engineering (SMILESENG) is the third edition that continues the path of
the successful previous schools, organized by the Spanish Network of Excellence
SEBASENet in 2016 and 2017. The areas evolve, so SMILESENG is opened to new
ways of learning and improving the software development process. Thanks to the
support of the Second SEBASENet Research Network, the School of Engineering
Sciences (EPSC), and other sponsors, I am proud to be able to organize this event,
aimed at undergraduates and postgraduates (especially PhD students), as well as
senior researchers and professionals interested in the application of AI techniques to
software engineering.

The SMILESENG scientific program includes four seminars by renowned researchers
that will surely be a source of inspiration for all of us. In addition, participants
will present 22 talks related to search-based software testing, machine learning to
support code development, and methodological aspects, among other topics. This
is an event open to the community, in which I hope we will have the opportunity
to open interesting debates and hear challenging ideas about ongoing works in this
area. All of this, why not, while we enjoy the magnificent city of Córdoba.

Welcome to the SMILESENG International Summer School and on behalf of all the
organizing team, I wish you an enjoyable experience and see you in Córdoba!

José Raúl Romero
General and Local Chair

iii

Organizing Committee

General and Local Chair
José Raúl Romero University of Córdoba, Spain

General Chair
Sebastián Ventura University of Córdoba, Spain

Program Chair
Aurora Ramírez University of Córdoba, Spain

Registration and Financial Chair
Carlos García-Martínez University of Córdoba, Spain

Web Chair
Rafael Barbudo University of Córdoba, Spain

Steering Committee
José Francisco Chicano University of Málaga, Spain
Inmaculada Medina-Bulo University of Cádiz, Spain
José Raúl Romero University of Córdoba, Spain

Local Committee
Eduardo Almeda University of Córdoba, Spain
Álvaro Espejo University of Córdoba, Spain
Aurora Esteban University of Córdoba, Spain
Eva Gibaja University of Córdoba, Spain
José María Luna University of Córdoba, Spain
María Luque University of Córdoba, Spain
Antonio Rafael Moya University of Córdoba, Spain
José María Moyano University of Córdoba, Spain
Cristóbal Romero University of Córdoba, Spain
Amelia Zafra University of Córdoba, Spain

v

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Student Volunteers
Mario Berrios University of Córdoba, Spain
Aitana Delgado University of Córdoba, Spain
José Manuel Flores University of Córdoba, Spain
Pedro Pablo García University of Córdoba, Spain
Fernando Herrera University of Córdoba, Spain

Financial Support and Sponsors

vi

Contents

Welcome Note iii

Organizing Committee v

I Seminars 1

Bayesian Analysis of Software Engineering Data (Robert Feldt) 3

Intelligent Recommender Systems in Software Development (Davide Di
Ruscio) . 4

Testing with Fewer Resources: Toward Adaptive Approaches for Cost-
effective Test Generation and Selection (Sebastiano Panichella and
Christian Birchler) . 5

Data Mining Algorithms Using/Used-by Optimizers: a DUO Approach to
Software Engineering (Leandro Minku) 7

II Student talks 9

Sustainability in Open Source: Bots to the Rescue (Adem Ait, Javier Luis
Cánovas Izquierdo and Jordi Cabot) 11

Automated Generation of Test Oracles for RESTful APIs (Juan C. Alonso,
Sergio Segura and Antonio Ruiz-Cortés) 13

Resource Optimization in End-to-End Testing (Cristian Augusto, Jesús
Morán, Claudio de la Riva and Javier Tuya) 15

vii

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Third-party Library Recommendations for Python Developers using Soft-
ware Analytics Techniques (Pedro P. García-Pozo, Aurora Ramírez
and José Raúl Romero) . 17

Green IN Artificial Intelligence: Energy Impact of Machine Learning Mod-
els (María Gutiérrez and Félix García) 19

Discovery Service Federation in the Web of Things (Juan Alberto Llopis,
Javier Criado and Luis Iribarne) . 21

SmartTLC: Towards Smart Traffic Light Systems (José R. Lozano-Pinilla
and Cristina Vicente-Chicote) . 23

Transforming Mobile Software Ecosystems with Semi-Automatic Feature
Integration through Dialogue-Based Feedback (Quim Motger, Xavier
Franch and Jordi Marco) . 25

III New ideas and work in progress 27

BLEU it All Away! Refocusing SE ML on the Homo Sapiens (Leonhard
Applis) . 29

Generating Complex Metamorphic Relations for Cyber-Physical Systems
with Genetic Programming (Jon Ayerdi, Valerio Terragni, Aitor Ar-
rieta, Paolo Tonella and Maite Arratibel) 31

Regression Testing for Self-driving Cars as Cyber-physical Systems in Vir-
tual Environments (Christian Birchler) 33

Incremental Just-In-Time Test Generation in Lock-Step with Code Devel-
opment (Carolin Brandt) . 35

Towards Bug Localization in Models in Game Software Engineering (Ro-
drigo Casamayor, Lorena Arcega, Francisca Pérez and Carlos Cetina) 37

Improving Search-based Test Case Generation by means of Interactive
Evolutionary Computation (Pedro Delgado-Pérez, Aurora Ramírez,
Kevin J. Valle-Gómez, Inmaculada Medina-Bulo and José Raúl Romero) 39

Road to Human as the Fitness Function (Jaime Font, Lorena Arcega, Fran-
cisca Pérez and Carlos Cetina) . 41

GitHub Actions Adoption Among Projects, What Are The Best Practices?
(Ali Khatami) . 43

viii

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Traceability Links Recovery in BPMN Models through Evolutionary Learn-
ing to Rank (Raúl Lapeña, Ana Marcén, Jaime Font and Carlos Cetina) 45

Active Learning-driven Testing of Web APIs (A. Giuliano Mirabella) . . . 47

Automatizing Software Cognitive Complexity Reduction: What is Next?
(Rubén Saborido, Javier Ferrer and Francisco Chicano) 49

IV Tool showcases 51

Online Testing of RESTful APIs with RESTest (Alberto Martin-Lopez) . . 53

Type4Py: Machine Learning-based Type Auto-completion for Python (Amir
M. Mir, Sebastian Proksch and Georgios Gousios) 55

SAd-CloudSim: A Toolkit for Modeling and Simulation of Self-Adaptive
Cloud Software Architectures (Maria Salama) 57

Author Index 59

ix

Seminars

1

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Bayesian Analysis of Software Engineering Data

Robert Feldt

Chalmers University of Technology

Abstract. Many other scientific fields that rely heavily on analyzing empirical
data, e.g. medicine, psychology, and economics, are in a sort of replication crisis.
One underlying reason is inadequate statistical practices. There is reason to believe
software engineering might not be much better off. In this seminar I will briefly
summarize key principles for Bayesian data analysis as well as show examples of
how one can apply it for analysis of software engineering data. I will also argue
what the benefits are and how it can be one step towards both making our results
more robust and help create chains of evidence between multiple studies.

Biography. Dr. Robert Feldt is a Professor of Software Engineering at Chalmers
University of Technology in Gothenburg, where he is part of the Software Engineer-
ing division at the Department of Computer Science and Engineering. He is also
a part-time Professor of Software Engineering at Blekinge Institute of Technology
in Karlskrona, Sweden. He is co-Editor in Chief of Empirical Software Engineering
(EMSE) Journal. He is interested in Software Engineering but with a particular fo-
cus on software testing, requirements engineering, psychological and social aspects
as well as agile development methods/practices. He is “one of the pioneers” in the
search-based software engineering field (according to an ACM Computing Survey
of SBSE) and has a general interest in applying Artificial Intelligence and Machine
Learning both during software development and, in general, within software systems.
Based on his studies in Psychology he also tries to get more research focused on hu-
man aspects; an area we have proposed to call Behavioral Software Engineering.

3

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Intelligent Recommender Systems in Software Development

Davide Di Ruscio

University of L’Aquila

Abstract. Recommender systems are a crucial component of several online shop-
ping systems, allowing business owners to offer personalized products to customers.
Recommender systems in software engineering (RSSE) have been conceptualized on
a comparable basis, i.e., they assist developers in navigating large information spaces
and getting instant recommendations that are helpful to solve a particular develop-
ment task. In this sense, RSSE provides developers with valuable suggestions, which
may consist of different items, such as code examples, topics, third-party compo-
nents, documentation, to name a few. However, developing RSSE is a complex task;
technical choices must be taken to overcome issues related to several aspects, includ-
ing the lack of baselines, limited data availability, decisions about the performance
measures, and evaluation approaches. This seminar makes an overview of RSSE and
describes the challenges that have been encountered in developing different RSSE
in the context of the EU CROSSMINER project. Specific attention will be devoted
to presenting the intricacies related to the development and evaluation techniques
that have been employed to conceive and evaluate the CROSSMINER recommender
systems. Moreover, the lessons that have been learned while working on the project
will also be discussed.

Biography. Dr. Davide Di Ruscio is Associate Professor at the Department of
Information Engineering Computer Science and Mathematics of the University of
L’Aquila. His main research interests are related to several aspects of Software
Engineering, Open Source Software, and Model Driven Engineering (MDE) includ-
ing domain specific modeling languages, model transformation, model differencing,
coupled evolution, and recommendation systems. He has published more than 140
papers in various journals, conferences and workshops on such topics. He has been
co-guest editor of a number of special issues. He has been in the PC and involved
in the organization of several workshops and conferences, and reviewer of many
journals like IEEE Transactions on Software Engineering, Science of Computer Pro-
gramming, Software and Systems Modeling, and Journal of Systems and Software.
He is member of the steering committee of the International Conference on Model
Transformation (ICMT), of the Software Language Engineering (SLE) conference, of
the Seminar Series on Advanced Techniques & Tools for Software Evolution (SAT-
TOSE), of the Workshop on Modeling in Software Engineering at ICSE (MiSE) and
of the International Workshop on Robotics Software Engineering (RoSE). Davide is
in the editorial board of the International Journal on Software and Systems Mod-
eling (SoSyM), of IEEE Software, of the Journal of Object Technology, and of the
IET Software journal.

4

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Testing with Fewer Resources: Toward Adaptive Approaches
for Cost-effective Test Generation and Selection

Sebastiano Panichella and Christian Birchler

Zurich University of Applied Science

Abstract. After a very brief introduction to the basic concepts of SBST (search-
based software testing), we will go into adaptive approaches to cost-effecting test
generation for Java systems, which will be demonstrated in a short demo. The
seminar will continue with the basics of self-driving cars development and testing,
and will end with a more detailed discussion on test regression (particularly selection
strategies) for self-driving cars software. A demo will also be given on the latter
topic, giving the seminar a practical character.

Biography. Dr. Sebastiano Panichella is a passionate Computer Science Re-
searcher at the Zurich University of Applied Science (ZHAW). He received the PhD
in Computer Science from the University of Sannio (Department of Engineering) in
2014 defending the thesis entitled “Supporting Newcomers in Open Source Software
Development Projects”. His main research goal is to conduct industrial research,
involving both industrial and academic collaborations, to sustain the Internet of
Things (IoT) vision, where future “smart cities” will be characterized by millions of
smart systems (e.g., cyber-physical systems such as drones, and other autonomous
vehicles) connected over the internet, composed by AI-components, and/or con-
trolled by complex embedded software implemented for the cloud. His research
interests are in the domain of Software Engineering (SE), cloud computing (CC),
and Data Science (DS): DevOps (e.g., Continuous Delivery, Continuous integration),
Machine learning applied to SE, Software maintenance and evolution (with partic-
ular focus on Cloud, mobile, AI-based, and Cyber-physical applications), Mobile
Computing. He is Review Board member of the EMSE journal.

Biography. Mr. Christian Birchler is a Research Assistant at the Zurich Univer-
sity of Applied Sciences where he is working on the EU Horizon project COSMOS
(“DevOps for Complex Cyber-physical Systems”). He studied at the University of
Zurich Software Systems with Applied Probability and Statistics as a minor sub-
ject. Currently, he is pursuing a master’s degree in Software Systems with Data
Science as a minor subject at the University of Zurich. During his studies, he
mainly focused on software testing. His research interests are search-based software
testing and fuzzing. In his ongoing work, he is investigating the area of software
testing and testing in virtual environments combined with the development of tools
to solve the problems in his research area. A prominent example is SDC-Scissor
(github.com/ChristianBirchler/sdc-scissor), which is a tool that leverages the test

5

Intl. Summer School on Search- and Machine Learning-based Software Engineering

selection part of the regression testing process for self-driving cars software. His vi-
sion is to provide a regression testing framework that also includes test prioritization
for simulation-based testing of cyber-physical systems.

6

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Data Mining Algorithms Using/Used-by Optimizers: a DUO
Approach to Software Engineering

Leandro Minku

University of Birmingham

Abstract. The fields of Software Analytics and Search-Based Software Engineer-
ing have evolved mostly as separate fields over the past decades. Both have achieved
a great level of maturity, finding their way into Software Engineering Practice. How-
ever, their achievements are limited by their isolated focus on either data mining
/ machine learning or search-based optimization. What could Software Analytics
achieve when using search-based optimization? And what could Search-Based Soft-
ware Engineering achieve when using data mining? This talk will discuss recent
advancements and future directions of the emerging field of DUO — Data mining
Using/Used-by Optimizers for empirical studies in software engineering.

Biography. Dr. Leandro L. Minku is an Associate Professor at the School of
Computer Science, University of Birmingham (UK). Prior to that, he was a Lec-
turer at the University of Leicester (UK), and a Research Fellow at the University
of Birmingham (UK). He received the PhD degree in Computer Science from the
University of Birmingham (UK) in 2010. Dr. Minku’s main research interests in-
clude machine learning for software engineering, machine learning for non-stationary
environments / data stream mining, class imbalance learning and search-based soft-
ware engineering. Among other roles, Dr. Minku is Associate Editor-in-Chief for
Neurocomputing, and Associate Editor for IEEE Transactions on Neural Networks
and Learning Systems, Empirical Software Engineering journal and Journal of Sys-
tems and Software. He was the general chair for the International Conference on
Predictive Models and Data Analytics in Software Engineering (PROMISE 2019-
2020), co-chair for the Artifacts Evaluation Track of the International Conference
on Software Engineering (ICSE 2020), and program committee member for presti-
gious conferences both in the fields of machine learning and software engineering,
such as IJCAI, AAAI and ICSE.

7

Student talks

9

Sustainability in Open Source:
Bots to the Rescue

Adem Ait
IN3 - UOC

Barcelona, Spain
aait mimoune@uoc.edu

Javier Luis Cánovas Izquierdo
IN3 - UOC

Barcelona, Spain
jcanovasi@uoc.edu

Jordi Cabot
IN3 - UOC, ICREA

Barcelona, Spain
jordi.cabot@icrea.cat

Abstract—Nowadays, most critical software is built as Open
Source Software (OSS) or heavily relies on it. Despite OSS bring-
ing many benefits -better quality, more flexibility or lower cost-
it suffers from problems such as the “tragedy of the commons”:
everybody uses Open Source, but very few contribute back.
Moreover, a key piece to the sustainability of OSS is the non-
coding contributions, helping to maintain and report different
threats to the project development. Usually not acknowledged, the
OSS community is crucial for the continuous maintenance of OSS
projects. Thereby, we propose the use of a self-guiding swarm
of smart software bots to assist project owners and developers
but also occasional contributors and community members in all
their software-related tasks. Bots will be trained using a variety
of artificial intelligence techniques, including machine learning
models derived from a curated collection of software project data
in social code hosting platforms like GitHub. Thus, the source
of information is extracted as collaboration graphs, which help
to represent the relationship between the project contributors.
Using machine learning techniques, we aim to learn from these
collaboration graphs to further configuration and adaptation of
the bots. With the ability to self-adapt, bots can answer to the
threats that an OSS project is facing. Furthermore, we intend
to create a software framework to model, generate, personalize,
combine and coordinate smart software bots to help in all phases
of software development and maintenance.

I. INTRODUCTION

The Open Source Initiative1 describes the Open Source
Software (OSS) development process as “a method that har-
nesses the power of distributed peer review and transparency...
The promise of OSS is better quality, higher reliability, more
flexibility and lower cost”. This promise is achieved by
developing OSS in a collaborative manner, where the whole
community involved in an OSS project (i.e., project owners,
external contributors and end-users) can participate.

A key characteristic of OSS projects is their global nature
and reach. Modern online code hosting platforms such as
GitHub have enabled geographically dispersed developers to
launch, maintain, and deploy OSS projects. These platforms
provide source control management systems to track changes
in the code, but also include collaboration features like issue-
tracking systems or the pull-request mechanism [2] to manage
the different development tasks in the project. These platforms
are implicitly standardizing a development process based on
open and free access to the code and the development tasks,

1https://opensource.org/

which aim at promoting a collaboration model among the
community of developers and users of the software.

In theory, this collaboration model should be able to quickly
evolve the software codebase to respond to the users’ needs
thanks to this higher community involvement. Unfortunately,
this is hardly ever what we see in practice. Using the metaphor
presented in the well-known article titled “The Cathedral and
the Bazaar” [3], what we typically find is an attempt to
reach a “Bazaar” model but poorly executed, where only few
community members are willing to participate and those who
do want to contribute lack the required support to collaborate
effectively. This situation is known as the “tragedy of the
commons”: everybody wants to benefit from the software,
but they all hope others will chip in. As a result, there is a
grossly disproportionate imbalance between those consuming
the software and those able to participate in building the
software, thus creating important sustainability issues.

Existing solutions to correct this situation are mostly fo-
cused on code aspects of OSS projects, which is not enough to
enable a real and effective collaboration model. OSS projects
are much more than their codebase: they are shaped according
to their community. For an OSS project to succeed, we need
to consider OSS as a global social endeavor where community
and source code dimensions must be first-class elements in the
evaluation, monitoring and progress of any project to guarantee
its long-term sustainability.

To tackle this situation we propose to develop a bot-driven
framework where a self-guiding swarm of smart software bots
would assist projects owners, developers (including occasional
contributors) and community members in all their OSS de-
veloping tasks going all the way up from simple tasks like
welcoming new project members or helping them to write
useful bug reports to automatically reject/fix contributions that
violate the project guidelines or code of conduct. The appli-
cation of bots for OSS can leverage on the open availability
of project assets (i.e., source code but also discussions, issues
or comments), which will be used to train the bots using a
variety of artificial intelligence techniques, including Machine
Learning (ML) models derived from a curated collection of
software project data in code hosting platforms like GitHub.

In the rest of this paper, we present a proposal for our
approach, describing a tentative architectural description and
discussing the main challenges to address.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

11

II. PROPOSAL & CHALLENGES

Transforming OSS engineering into a successful and sus-
tainable process requires being able to enroll as much ad-
ditional help as possible to manage the software and the
surrounding community. We propose to leverage on the help
of a swarm of smart software bots to tackle the diverse tasks
required to address the sustainability challenges on OSS.

Figure 1 shows the process we devised to create the bots.
As can be seen, we define a process composed of four
phases: (1) data collection, where project assets are gathered
and curated (code but also other collaboration assets such as
issues, discussions or comments, among others); (2) graph
generation and metric calculation, where collaboration graphs
will be generated and used to analyze OSS projects; (3) bot
configuration and training, where graphs and metrics will be
employed to train bots to perform specific tasks; and (4) bot
deployment, where bots will be deployed in the OSS project
and used to perform specific tasks.

We have identified several challenges to develop our pro-
posal, which we present in the following.

Mining collaboration graphs. Our proposal leverages on
collaboration graphs to represent OSS projects, thus enabling
the defining of metrics to evaluate relationships between assets
of the project. A collaboration graph is a directed graph where
nodes represent project assets (e.g., commits, contributors,
issues, etc.) and edges represent relationships between them
(e.g., the author of a comment, the contributor of a commit, the
issue that was assigned to a contributor, etc.). Figure 2 shows
an example of a collaboration graph. However, the creation of
collaboration graphs is not an easy task, as the extraction and
curation of the data recovered from repositories from online
code hosting platforms usually require an intricate process
to digest the data. Existing solutions such as Cauldron2 or
Augur3 are able to extract tabulated data from repositories,
which could be used to generate our graph. To the best of our
knowledge, only SourceCred4 is able to generate graphs from
repositories, but the extracted data is very limited.

Graph-specific metrics. Once the data is extracted in the
form of a collaboration graph, the next challenge is to extract
significant metrics to describe behaviors, patterns, or identifi-
cation of roles. The definition and calculation of graph-specific
metrics has usually been covered in the field of Social Network
Analysis, which investigates social structures through the use
of networks and graph theory (e.g., [1], [4]). In our framework,
we propose to explore the application of graph-specific metrics
to evaluate the collaboration in OSS projects.

Graph ML Methods. Recently, Graph Neural Networks
(GNN) have received a lot of attention due to its ability to
analyze graph structural data, which is difficult to analyze as
it does not exist in a Euclidean space, does not have a fixed
form and usually is hard to visualize for human interpretation.

2https://cauldron.io/
3https://github.com/chaoss/augur
4https://sourcecred.io/

2

Graph Generation
& Metric Calculation

33

Bot Configuration
& Training

1

Data Collection
Online Code

Hosting Platform

4

Bot Deployment

Fig. 1. Process to create the bots.

COMMENT
COMMIT
REVIEW
USER
ISSUE
PULL
REPO

Fig. 2. Example of a collaboration graph of a GitHub repository.

A GNN is a neural network that can directly be applied to
graphs and provides a convenient way for node-level, edge-
level, and graph-level prediction tasks. We propose to use
GNNs to analyze collaboration in our graphs and to configure
the behavior of bots for OSS projects, as we describe below.

Bot definition and configuration. Our approach aims at
providing bots specifically tailored for OSS projects. We
propose to define languages to build a smart bots infrastruc-
ture able to monitor OSS projects, define and enforce rules,
and communicate with the user. Furthermore, to support the
deployment of a swarm of bots, we would need to define
mechanisms to enable effective bot collaboration protocols.

III. CONCLUSION

In this paper we have described our proposal for the devel-
opment of a bot-driven framework to tackle the diverse tasks
required to address the sustainability challenges on OSS. The
framework leverages on mining software repository techniques
to extract collaboration graphs from the repositories of OSS
projects, which are then used to configure and train bots for
OSS projects. As next steps, we plan to explore the different
challenges commented in Section II.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish gov-
ernment (LOCOSS project - PID2020-114615RB-I00).

REFERENCES

[1] Mohammad Y. Allaho and Wang-Chien Lee. Analyzing the Social Ties
and Structure of Contributors in Open Source Software Community. pages
56–60, 2013.

[2] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An Exploratory
Study of the Pull-based Software Development Model. In Int. Conf. on
Software Engineering, pages 345–355, 2014.

[3] Eric S. Raymond and Tim O’Reilly. The Cathedral and the Bazaar. 1999.
[4] Wen Zhang, Ye Yang, and Qing Wang. An Empirical Study on Identifying

Core Developers Using Network Analysis. In Int. Workshop on Evidential
assessment of software technologies, pages 43–48, 12.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

12

Automated Generation of Test Oracles
for RESTful APIs

Juan C. Alonso
SCORE Lab, I3US Institute,

University of Seville,
Seville, Spain

Email: javalenzuela@us.es

Sergio Segura
SCORE Lab, I3US Institute,

University of Seville,
Seville, Spain

Email: sergiosegura@us.es

Antonio Ruiz-Cortés
SCORE Lab, I3US Institute,

University of Seville,
Seville, Spain

Email: aruiz@us.es

Abstract—Web APIs following the REST architectural style
(frequently known as RESTful APIs) have become the de-facto
standard for web integration. In recent years, a large number
of tools for automatically testing this type of API have emerged.
However, all these tools fall short when it comes to their fault-
detection capabilities, which are limited to unexpected failures
(i.e., 5XX code responses) and disconformities with the API speci-
fication. This article describes our ongoing work for automatically
generating test oracles for RESTful APIs. Specifically, we propose
to automatically infer likely invariants from sets of inputs and
outputs that can later be used as test oracles by leveraging an
extended version of Daikon, a tool that detects likely invariants by
processing a program execution. A preliminary evaluation with
8 operations from 6 industrial APIs shows the effectiveness of
our approach for automatically generating test oracles, detecting
reproducible faults in two of them (GitHub and OMDb).

I. INTRODUCTION

RESTful APIs are the cornerstone of software integration,
allowing systems to interact with each other over the network
by exchanging messages in JSON or XML format through the
HTTP protocol. Web services usually provide RESTful APIs
for different clients to access their functionality. This is one
of the main reasons why testing these systems is vital, since
a fault in an API could compromise hundreds or thousands of
other systems consuming it.

RESTful APIs are commonly described using languages
such as the OpenAPI Specification (OAS) [1], which provides
a machine-readable description of the API functionality that
is used by different tools to automatically generate test cases
[2]. All these tools are limited by the types of errors they can
detect, such as disconformities with the OAS specification and
server errors.

An apparently successful response returned by an API (i.e.,
a 2XX status code that conforms to the API specification)
does not guarantee that the system is fulfilling its intended
functionality of behavior. This is a classical problem in Soft-
ware testing known as the oracle problem [3], that can be
expressed as the challenge of, given an input for a system,
distinguish the expected behavior from a potentially incorrect
one. For example, when performing a search for songs in
Spotify establishing a maximum number of results to return
(limit parameter), the size of property of the response body
whose value is an array of songs (items) should be less or
equal than the value set for this parameter (input.limit

>= size(return.items)). Although it is possible to
generate these oracles manually, this is a time-consuming task
that requires domain knowledge.

An invariant is a property that holds at a certain point
or points of the execution of a program, such as its input
parameters and responses in the context of black box testing of
RESTful APIs. Currently, there are several systems available
for the automated detection of likely invariants, with Daikon
[4] being one of the most popular. Daikon detects likely
invariants by processing an instrumented version of a program,
this instrumentation process is performed by an instrumenter,
a software that converts a program structure into a format
that can be analyzed by Daikon. There are several Daikon
instrumenters available, most of them are designed for specific
programming languages (i.e., they detect invariants on white
box contexts) such as Java or Perl.

In this article, we propose an approach for automatically
generating test oracles for RESTful APIs from a set of valid
API requests by modelling the generation of oracles as a prob-
lem of extracting likely invariants. For this purpose, we created
an instrumenter that takes as input an OAS specification and
a set of test cases and returns a set of files that can be used
as inputs for Daikon (i.e., it works on a black box context).
A preliminary evaluation with a set of 8 operations from 6
commercial APIs shows the potential of this approach for
automatically generating hundreds of test oracles, detecting
real errors in two of the systems under test, namely GitHub
and OMDb.

II. AUTOMATED GENERATION OF TEST ORACLES FOR
RESTFUL APIS

This section describes our approach for the automated
generation of test oracles for RESTful APIs from an OAS
specification and a set of test cases (i.e., values of the input
parameters and the response body). Our instrumenter receives
these two files as input, returning a decls file that describes
the structure of the program (in our case, the input and the
possible outputs), and a dtrace file specifying, for each test
composing the test suite, the values assigned to each part of
the structure defined by the decls file.

Specifically, we have modified Daikon by adding a total of
22 new invariants and suppressing 25 invariants that do would

Intl. Summer School on Search- and Machine Learning-based Software Engineering

13

TABLE I
ORACLES GENERATED. TP=TRUE POSITIVES, FP=FALSE POSITIVES

API Operation # oracles Precision (%) TP FP Inconsistency/Bug

Amadeus Hotel Find hotel offers 93 60.2 56 37 0
GitHub List organization repositories 106 70.1 68 29 9
OMDb By ID or Title 20 70 14 6 0
OMDb By Search 7 100 5 0 2
Spotify Create Playlist 28 100 28 0 0
Spotify Get Album tracks 51 76.5 39 12 0
Yelp Search businesses 25 32 8 17 0
YouTube List videos 171 59.1 101 70 0

Total 501 65.1 319 171 11

not reveal any relevant information in our current context,
resulting in the generation of redundant information or false
positives. These new invariants are based on a previous publi-
cation of the authors in which an evaluation was performed on
a dataset of 48 real world APIs [5]. This version of Daikon
supports a total of 140 invariants that can be classified into
one of the following categories:

• Arithmetic relationships. They specify comparisons be-
tween the values of numeric properties. For example,
when searching for albums on Spotify, the track num-
ber of a song must be greater than or equal to 1
(return.track_number >= 1).

• Array properties: These invariants indicate that an
array has certain characteristics. For example, when
searching for hotels by id in Amadeus, the id of
each hotel returned must be contained in the array of
ids used as the input parameter (return.hotelId
in input.hotelIds[]). Also, the size of the ar-
ray property containing the results (data) must be
less than or equal to the size of the list of ids
used as a parameter (size(input.hotelIds[])
>= size(return.data[])).

• Specific values: They specify that a property al-
ways has a fixed value or set of values. For ex-
ample, in the GitHub API, a repository can be
public or private (return.visibility one of
"private", "public").

• Specific formatting: These invariants indicate that a
string field always follows a specific format, such as
URLs, dates or emails. For example, the OMDb’s
text field “Poster” must always be of type URL
(return.Poster is Url).

III. PRELIMINARY EVALUATION

For our evaluation, we selected a total of 8 operations from
6 industrial RESTful APIs. For each one of these operations,
we automatically generated 50 valid API requests (2XX codes)
using the black box framework for automated testing of
RESTful APIs RESTest [6]. These requests were used as
inputs for our approach, resulting in a set of likely invariants
(oracles) for the operation.

These invariants are manually classified as true positives,
false positives or as invariants that reveal the existence of a bug
or inconsistency. The results of our evaluation (Table I) show

the potential of our approach for automatically generating
oracles for complex real-world systems, achieving a total
precision of 65.1% and detecting errors and inconsistencies
in the documentation and implementation of systems with
millions of users such as GitHub or OMDb.

In the GitHub API, our proposal automatically detected that
one of the fields in the response, template_repository,
was not present in any of the repositories returned, even in
cases in which they had a template repository. This bug has
been confirmed by the API developers, who have created an
internal issue to update the documentation.

According to their official documentation, “By Search” op-
eration of the OMDb API allows to search for titles filtered by
type (“movie”, “series” or “episode”). However, our proposal
detected not only that the API never returns results of type
“episode”, but that it returns results of a fourth type not
specified in the documentation (“game”), which can also be
used as the value of the parameter used to filter the search.

IV. CONCLUSION

Our future work includes using the generated oracles for
the automatic creation of assertions to evaluate the validity of
API responses, as well as developing a method to prioritise
among the generated oracles and detect false positives.

REFERENCES

[1] “OpenAPI Specification,” https://www.openapis.org, accessed May 2022.
[2] S. S. Myeongsoo Kim, Qi Xin and A. Orso, “Automated Test Generation

for REST APIs: No Time to Rest Yet,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2022.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software
engineering, vol. 41, no. 5, pp. 507–525, 2014.

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao, “The daikon
system for dynamic detection of likely invariants,” Science of
Computer Programming, vol. 69, no. 1, pp. 35–45, 2007, special
issue on Experimental Software and Toolkits. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016764230700161X

[5] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-
Cortes, “ARTE: Automated Generation of Realistic Test Inputs for Web
APIs,” IEEE Transactions on Software Engineering, 2022.

[6] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-
Box Constraint-Based Testing of RESTful Web APIs,” in International
Conference on Service-Oriented Computing, 2020, pp. 459–475.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

14

Resource Optimization in End-to-End Testing
Cristian Augusto

Department of Computing
University of Oviedo

Gijón, Spain
augustocristian@uniovi.es

Jesus Morán
Department of Computing

University of Oviedo
Gijón, Spain

moranjesus@uniovi.es

Claudio de la Riva
Department of Computing

University of Oviedo
Gijón, Spain

claudio@uniovi.es

Javier Tuya
Department of Computing

University of Oviedo
Gijón, Spain

tuya@uniovi.es

Abstract—End-to-end (E2E) test suite execution is expensive
due to the number of complex resources required. When E2E
test suites are executed frequently into a continuous integration
system, the total amount of resources required may be pro-
hibitive, moreover when the tests are run in the Cloud with
different billing strategies. Traditional techniques to optimize
the test suites, such as test suite reduction, minimization, or
prioritization, are limited in E2E due to the fact that reordering
or selecting a subset of test cases also requires deploying the same
expensive system. The current Ph.D. thesis aims to achieve an
efficient E2E test execution for large systems in the Cloud. This is
done through a smart characterization of the resources required
by the test cases, grouping and scheduling them according to their
resource usage to avoid unnecessary redeployments and reduce
execution time, and finally, executing them into a combination
of Cloud infrastructure (i.e., containers, virtual machines, and
services) to optimize the costs employed in executing the test
suite. Based on the scheduled test cases, we elaborate a cost
model for selecting the most cost-effective infrastructure of those
available in the Cloud, considering both the cost of the resources
required by the test cases and the oversubscription cost (cost
incurred in infrastructure contracted and not used during the
test suite execution).

I. INTRODUCTION

The execution of End-to-end (E2E) test suites is costly in
resource terms due to the expensive and complex systems
required. When the test suites are put into a continuous in-
tegration environment executed with every repository change,
the huge number of resources required can be prohibitive for
some companies, particularly when they are run in the Cloud
with pay-per-usage billing. The traditional approaches used for
optimizing test suites, such as test prioritization, minimization,
or reduction, are limited in E2E because selecting a subset
or executing the test cases in a fixed order to preserve the
effectiveness, may require fewer but also expensive resources.
Moving E2E testing to the Cloud brings the opportunity
for a better cost but is challenging because of the number
of different infrastructures with different costs available to
deploy the same resource. Often, the selected infrastructure
combination does not match the test suite requirements, which
leads to oversubscription. Oversubscription is the difference
between the infrastructure contracted and used and causes that
part of the cost is not invested in testing tasks, incurring in
an extra cost budget [1]. In this thesis, we aim to achieve
efficient E2E test suite execution of large systems in the
Cloud. For this purpose, we focus on the resources: the
physical, logical, or computational entities that are required

by the test cases during their execution. We elaborate an
orchestration process that, through the information provided
by the characterization, schedules the test cases to reduce time
and unnecessary resource redeployments and execute the test
suite into a combination of Cloud infrastructure. To choose the
most cost-effective combination we elaborate a model which
considers the cost of the (contracted) infrastructure, as well
as the cost of the resources required by the test cases and the
cost of oversubscription during the execution.

II. RESEARCH HYPOTHESIS

Working in the Cloud has become complex and heteroge-
neous and with it, selecting the most suitable alternative to
carrying out the E2E testing, has become increasingly more
challenging. The organization and management of the E2E
test cases could derive from different execution times and,
depending on how they are deployed in the Cloud, the costs
might change. To determine the specific objectives of the
research we consider the following four hypotheses:
H1: The execution of End-to-End (E2E) test suites can re-
quire large amounts of physical-logical resources, limiting the
effectiveness of state-of-the-art techniques such as test case
minimization, reduction, or parallelization.
H2: The scheduling of E2E test suites can be optimized by
analyzing the dependencies between test cases and looking
for concurrency in the use of resources (e.g., web servers,
databases, hardware devices, and files, among others).
H3: A smart resource characterization, complemented by
grouping and scheduling according to the resources used
by the test cases, could save time and avoid unnecessary
redeployments in the execution of the test suite.
H4: Considering the cost of the resources and oversubscription
during the deployment of the test suite in the Cloud could
help to select the most cost-effective combination among the
available infrastructure.

III. OBJECTIVES OF THE WORK

The general objective of this thesis is to optimize end-to-
end test suite execution. This objective is particularized in the
following sub-objectives:

O1 Analyze the challenges and issues arising from the
execution of the E2E Test Suites on large software
developments in the Cloud.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

15

O2 Characterize the resources employed during the E2E
testing by considering different attributes and how the
resources are used by the test cases.

O3 Improve the E2E test suite execution by considering:
(1) relationships between resources, (2) how test cases
access the resources, and (3) the resource attributes.

O4 Select a cost-effective infrastructure to execute the test
suite in the Cloud, considering both the cost of the
resources employed in E2E and oversubscription.

O5 Experimentation and validation of the approach, execut-
ing test suites of real-world scenarios.

IV. PROPOSED METHODOLOGY

The methodologies used to achieve the prior objectives are
the following:

1) Review the state of the art and literature: we intend
to review the state-of-the-art works such as test suite
minimization, reduction, prioritization, cloud economics,
or cost models in the cloud, among others.

2) Research-action: we are collaborating with the Institute
of Information Science and Technologies ”Alessandro
Faedo” which provides us with real-world problems
faced in European projects such as Elastest [2]. Specif-
ically, we intend to validate the research results with
several test suites in the industrial field.

3) Incremental development: we develop the support tool
based on agile methodologies [3] . Each new feature
added is a research result according to its relevance

V. FIRST RESULTS

To accomplish the second objective (O2), we carried out a
characterization of the resources employed in the E2E testing,
consisting of several attributes that represent the different
resource features and their relationship with the test cases
(e.g., available resources, access mode performed by test
cases, or if the resource is shared). We propose a four-
phase orchestration process called RETORCH (acronym of
Resource aware End-to-end Test ORCHestation) to accom-
plish the first three objectives (O1, O2, and O3). RETORCH
was published at the QUATIC19 conference [4] and extended
to the Software Quality Journal [5]. The work was also
presented in the ACM Research competition in the ICSE20
[6] and won an award in the 5th edition of the SISTEDES-
Everis Awards [7]. RETORCH uses the information from
the characterization (resource identification) to generate sets
of test cases with compatible usage of resources (grouping).
The sets are split into subsets and scheduled sequentially or
in parallel to reduce the execution time and avoid unnec-
essary redeployments (scheduling) and are finally deployed
into a continuous integration environment (orchestration). The
approach was validated (O5) with a real-world example of
an educational application called FullTeaching [8], achieving
reductions in the execution time (61% less than the non-
orchestrated test suite) and fewer resources employed (due
to resource sharing between test cases). To accomplish the
first and fourth objectives (O1 and O4), we develop a cost

model focused on the cost of the resources employed in
E2E test suites. The model estimates the cost invested in
executing the test suite and the oversubscription cost. These
two costs with the infrastructure cost (contracted) support
the tester’s decision-making to choose the most cost-effective
infrastructure among those available in the Cloud. This model
has also been submitted to the JISBD22 [9] conference.

VI. CONCLUSIONS AND FUTURE WORK

The current thesis addresses the upcoming issue of opti-
mizing the execution of E2E test suites in the Cloud. Its
first results have proven that using a smart characterization
of the resources employed on end-to-end test suites, grouping
the test cases according to the resource usage, scheduling,
and orchestrating them, savings in terms of resources and
time can be achieved. The cost model that considers both
the cost of executing the test suite and the cost incurred
in oversubscription is a work in progress and we expect
that it will help in selecting the most cost-effective Cloud
infrastructure and obtain a better execution cost. As future
work, we want to validate RETORCH in more real-world end-
to-end test suites. We are exploring how a smarter cost model
could improve the efficient E2E test execution. Specifically,
we aim to integrate the cost model in an infrastructure advisor
engine that analyses all three costs. The purpose of the advisor
is to make suggestions about Cloud infrastructure changes
that lead to a more cost-effective test suite execution (e.g.,
new infrastructures available, or changes in those selected that
reduce one of the costs).

ACKOWLEDGEMENTS

The authors would like to thank Dra. Antonia Bertolino
(ISTI-CNR, Pisa Italia) for her contributions to the line of
research. This work was supported in part by the Spanish Min-
istry of Economy and digital transformation under TestBUS
(PID2019-105455GB-C32) and SEBASENet 2.0 (RED2018-
102472-T)”.

REFERENCES

[1] K. Inçki, I. Ari, and H. Sözer, “A survey of software testing in the cloud,”
Proceedings of the 2012 IEEE 6th International Conference on Software
Security and Reliability Companion, SERE-C 2012, pp. 18–23, 2012.

[2] URJC, FOKUS, TUB, INSTI-CNR, IMDEA, and ATOS, “Elastest.”
[Online]. Available: https://elastest.eu/

[3] P. Deemer, G. Benefield, C. Larman, and B. Vodde, The Scrum Primer:
A Lightweight Guide to the Theory and Practice of Scrum. InfoQ,
2012. [Online]. Available: www.odd-e.com

[4] C. Augusto, J. Morán, A. Bertolino, C. de la Riva, and J. Tuya, “Re-
torch: Resource-aware end-to-end test orchestration,” Communications in
Computer and Information Science, vol. 1010, pp. 297–310, 9 2019.

[5] ——, “Retorch: an approach for resource-aware orchestration of end-to-
end test cases,” Software Quality Journal, 2020.

[6] C. Augusto, “Efficient test execution in end to end testing,” in Proceedings
- 2020 ACM/IEEE 42nd International Conference on Software Engineer-
ing: Companion, ICSE-Companion 2020, 2020, pp. 152–154.

[7] C. Augusto and C. de la Riva, “Optimización de recursos en pruebas de
sistema,” 5th edition of the SISTEDES-Everis Award, 2021.

[8] URJC and P. F. Pérez, “Fullteaching - elastest repository,” 2019.
[Online]. Available: https://github.com/elastest/full-teaching

[9] C. Augusto, J. Morán, C. de la Riva, and J. Tuya, “Modelo de costes
para el despliegue de pruebas e2e en entornos cloud,” 2022, unpublished
Manuscript.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

16

Third-party Library Recommendations for Python
Developers using Software Analytics Techniques

Pedro P. Garcı́a-Pozo
Dept. Computer Science
University of Córdoba

i82gapop@uco.es

Aurora Ramı́rez
Dept. Computer Science
University of Córdoba

aramirez@uco.es

José Raúl Romero
Dept. Computer Science
University of Córdoba

jrromero@uco.es

Abstract—This talk provides an overview of our ongoing
research into the design of intelligent assistants to support Python
developers. In the context of a bachelor thesis, we are taking the
first steps towards this long-term research objective. In this sense,
this short paper presents the motivation and research objectives
of our work, as well as our first results focused on the analysis of
the Python library ecosystem using software analytics techniques.

I. INTRODUCTION

Python has become one of the most widely used program-
ming languages among developers due to its low learning
curve, its portability and the large amount of available re-
sources within the community. The availability of third-party
libraries is clearly one of the key features of Python, which
promotes code reuse while reducing development effort. PyPi,
one of the package managers for Python, currently hosts more
than 375,000 projects.1 In 2016, the Python ecosystem was
already recognized as one of the most extensive and with
higher growth prospects [1].

In such a vast and dynamic ecosystem, selecting the most
suitable third-party library becomes a hard task. Several li-
braries might meet the functional requirements, so program-
mers need to consider other factors like its development sup-
port, dependencies and compatibility with other libraries, etc.
Furthermore, they should decide how the library functionalities
are better integrated in their current program, and whether it
actually provides better performance than their own code.

The problem of library recommendation has been studied
in the recent literature for Java systems [2], [3], [4]. However,
the recommendations are mostly based on the idea of finding
similar projects to the one under evaluation, then choosing the
libraries that appear in the related projects but have not been
used in the new one. These recommender systems explore
a large set of code repositories, using collaborative filtering,
pattern mining or clustering to discover similarities among
them. Recently, some authors have focused on how to support
library migration, taking a new temporal perspective of the
problem by means of deep learning [5].

In this bachelor thesis, we want to take the first steps
towards providing intelligent recommendations about third-
party libraries oriented to Python developers. Our research

1https://pypi.org/ (Accessed: 31/05/2022)

vision is that current recommender systems do not exploit
all the potential knowledge hidden in software repositories,
and still require additional steps to support developers in the
effective integration of the recommended libraries.

II. RESEARCH OBJECTIVES

In the long-term, we have identified three research objec-
tives towards the design of more effective intelligent develop-
ment assistants specifically oriented to Python:

1) Analyze the use of Python library in repositories to
extract hidden knowledge to make recommendations.

2) Enhance the code knowledge base to be able to adapt
the recommendations to the project context.

3) Assist the developers regarding how their code should
be combined or replaced by API calls to the library.

III. OVERVIEW OF THE APPROACH

Figure 1 shows a high-level view of the proposed approach
to develop an intelligent assistant. We first need to analyze the
Python library ecosystem, adopting mining software reposito-
ries (MSR) best practices to extract data about library usage
by a large number of repositories. Filtering and statistically
studying the collected dataset is necessary at this stage to
ensure that the information is representative and useful to
perform next steps. In the second phase, we will enhance the
knowledge base with additional information from the selected
set of libraries (popularity, version compatibility or update).
Library usage trends, e.g., whether some libraries are replaced
in favor of others or they become obsolete, will be analyzed
using temporal pattern mining techniques over the commit
histories. Also, we will study dependencies among libraries
to discover patterns of libraries frequently used together, or
groups of libraries with related functionalities. Rule mining
and clustering techniques will be applied to such purpose. As
a final step, we will make use of all the available information
to help developers integrate the library in his/her project. This
implies the study of the project to detect pieces of code likely
to be changed by API calls to the library. Understanding how
other repositories use specific libraries, and whether the current
code has similar dependencies is necessary to chose a library
satisfying the developer’s needs and expertise. For this step,
we hypothesize that code structural analysis can be combined
with classification rules learned from other repositories as done

Intl. Summer School on Search- and Machine Learning-based Software Engineering

17

Fig. 1. Proposed approach to build intelligent assistants for Python developers.

to detect design pattern implementations [6]. . Finally, we seek
to explore neural code transformers to assist the developer in
the effective integration of the library functionalities, as they
have shown great potential in code generation tasks like code
completion [7].

IV. FIRST RESULTS

We are currently working on the first research objective,
using MSR and pattern mining techniques to extract knowl-
edge about the usage of Python libraries in GitHub. Following
Vidoni’s guidelines for conducting MSR studies [8], we have
sampled public repositories2 using filters to ensure that the
selected repositories are relevant and active. The following cri-
teria were established: minimum number of commits (1,000),
minimum number of stars (100), and update (last commit after
1st January 2021). As a result, we have obtained a list of
3,347 repositories. PyGitHub3 and Requirements Parser4 were
used to access the repository content and extract the libraries
specified in the requirements.txt file, respectively. Our
procedure returned 802 repositories with a valid file, resulting
in a set of 3,330 different libraries in use.

An initial statistical analysis reveals some interesting in-
sights. The maximum number of libraries used by a single
repository is 232, with a median equal to 8. The average
(15.5) and standard deviation (24.6) clearly indicate that
the usage of libraries across repositories presents a skewed
distribution: many repositories use a small number of libraries,
and only a small sample of repositories import many of
them. Even though the initial number of libraries could be
considered high, we have found that more than half of them
only appear in one repository. This seems to suggest that
some libraries were conceived by the repository contributors
without a clear intention of being reused in other projects.
Only 32 of the 3,300 libraries (0.97%) appear in 50 or more
repositories, although it is worth noting that 10 of them
(requests, numpy, sphinx, sphinx, six, pyyaml,

2For this step we used GitHub Search: https://seart-ghs.si.usi.ch/
3https://pygithub.readthedocs.io/ (Accessed: 31/05/2022)
4https://requirements-parser.readthedocs.io/ (Accessed: 31/05/2022)

scipy, python-dateutil, jinja2, matplotlib and
pytz) are included in 100 repositories or more.

To discover library pattern usages, we have applied a pattern
mining algorithm called DCI Closed [9] that returns subsets
of libraries frequently appearing together. Notice that for this
part of the study we keep only those libraries appearing in two
or more repositories, i.e., 1,237 libraries in 787 repositories.
Despite the fact that few repositories contain large sets of li-
braries, we have found pairs of libraries that appear together in
between 10% and 14% of the repositories. Some frequent com-
binations are: {numpy, scipy}, {numpy, matplotlib},
{requests, six} and {requests, pyyaml}.

V. CONCLUSION AND FUTURE WORK

Our initial results have provided us with useful knowledge
regarding the current adoption of Python libraries in GitHub
repositories. Our next steps will be directed towards enlarging
the dataset and applying other unsupervised techniques to
find more patterns and dependencies. In particular, we think
the DBSCAN clustering algorithm will be useful to isolate
libraries with dense usage from those used more sparsely.
Then, we will continue our roadmap, focusing on exploding
library metadata (e.g., from PyPi) and temporal patterns. All
the collected knowledge will feed our intelligent assistant,
which will be implemented as an extension or plug-in for IDEs
(VSCode, Eclipse or Pycharm). Such an assistant is expected
to give real-time recommendations to the developer with the
aim of improving his/her code, automatically generating code
lines to efficiently operate with the recommended libraries.

ACKNOWLEDGMENT

Work supported by the Spanish Ministry of Science and In-
novation (RED2018-102472-T, PID2020-115832GB-I00) and
the Andalusian Regional Government (DOC 00944).

REFERENCES

[1] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-Level Determinants
of Sustained Activity in Open-Source Projects: A Case Study of the PyPI
Ecosystem,” in ACM Joint Meeting on European Softw. Eng. Conf. and
Symposium on the Foundations of Softw. Eng., 2018, p. 644–655.

[2] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,” in
20th Working Conf. Reverse Engineering, 2013, pp. 182–191.

[3] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue, and D. Lo, “Im-
proving reusability of software libraries through usage pattern mining,”
J. Syst. Softw., vol. 145, pp. 164–179, 2018.

[4] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di Penta, “CrossRec:
Supporting software developers by recommending third-party libraries,”
J. Syst. Softw., vol. 161, p. 110460, 2020.

[5] P. T. Nguyen, J. Di Rocco, R. Rubei, C. Di Sipio, and D. Di Ruscio,
“DeepLib: Machine translation techniques to recommend upgrades for
third-party libraries,” Expert Syst. Appl., vol. 202, p. 117267, 2022.

[6] R. Barbudo, A. Ramı́rez, F. Servant, and J. R. Romero, “GEML:
A grammar-based evolutionary machine learning approach for design-
pattern detection,” J. Syst. Softw., vol. 175, p. 110919, 2021.

[7] N. Chirkova and S. Troshin, “Empirical Study of Transformers for
Source Code,” in ACM Joint Meeting on European Softw. Eng. Conf.
and Symposium on the Foundations of Softw. Eng., 2021, p. 703–715.

[8] M. Vidoni, “A systematic process for mining software repositories:
Results from a systematic literature review,” Inf. Softw. Technol., vol.
144, p. 106791, 2022.

[9] C. Lucchese, S. Orlando, and R. Perego, “DCI Closed: A Fast and
Memory Efficient Algorithm to Mine Frequent Closed Itemsets,” in ICDM
Workshop on Frequent Itemset Mining Implementations, 2004, pp. 1–9.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

18

Green IN Artificial Intelligence: Energy Impact of
Machine Learning Models

Marı́a Gutiérrez
Institute of Technology

and Information Systems
University of Castilla-La Mancha

Ciudad Real, Spain
Email: maria.ggutierrez@uclm.es

Félix Garcı́a
Institute of Technology

and Information Systems
University of Castilla-La Mancha

Ciudad Real, Spain
Email: felix.garcia@uclm.es

Abstract—Nowadays, artificial intelligence (AI) algorithms are
used in a wide range of applications, and as their use becomes
more common, considering their environmental impact becomes
an increasingly urgent topic. We present some empirical cases to
illustrate different approaches for energy-efficient AI models: the
choice of model and the choice of “real” data or synthetic data
for the training dataset. These cases can be used as examples
of how a green-driven approach can make contributions to the
lifecycle of AI models, helping developers to take energy efficiency
requirements into consideration when developing their programs
and negotiate a suitable trade-off between energy efficiency and
model reliability and performance.

I. INTRODUCTION

The use of artificial intelligence has been increasing over
the past years, which has also generated a greater interest
in researching the energy consumption of AI systems, and
especially of those that include some form of machine learn-
ing or neural network. However, attempts at improving the
energy efficiency of a model have traditionally been made by
designing computer architecture that is particularly suited to
run machine learning (ML) models, while the study of the
models themselves has been overlooked.

However, there are reasons to research the energy consump-
tion of the models themselves. Some studies already point
out how the computing cost for ML models has increased
exponentially over the last few years [5], and the lack of stan-
dardized methods for measuring the energy consumption of
these kind of programs [2] hinders our abilities to adequately
measure and understand their energetic behavior. In turn, this
makes all the harder to design AI systems that take energy
efficiency into consideration, since it is not clear which kind of
design choices could contribute to its energy efficiency without
compromising its performance.

In this proposal, we propose two empirical cases that
illustrate possible design choices to develop and train ML
models with an eye on their energy consumption: the choice
of using ”real” training data versus synthetic training data and
the choice of the model itself.

II. PROPOSED CASES

A. Synthetic training data or real training data

The most energetically expensive part of the development
of a machine learning model often turns out to be its train-
ing, not only because it is a task with high computational
demands, but also because finding the optimal combination
of hyperparameters is a difficult process that requires a lot of
experimentation.

For this case, we studied if the choice of training data
could affect the overall consumption of a ML model during
its training. Many systems are trained using “real” datasets,
constructed from data extracted from the real world (such as
hospital records, grocery store tickets, network traffic, etc.).
However, training models on synthetic datasets is also an
extended practice, since real data is not always available, or
presents in an unsuitable format. These datasets are created by
synthetic data generators, which produce data according to a
particular distribution and are able to generate any amount
of data on demand, on a format that requires little to no
preprocessing.

To properly compare the energy consumption of training
with a real dataset versus a synthetic one, we prepared a set
of algorithms to perform a binary classification task. We set the
task to be run on two different environments: first on MOA [1]
and then on WEKA [4]. We chose four algorithms that are
available on both platforms and are typical for this kind of
task: naı̈ve Bayes, Hoeffding tree, support vector machine
(SVM) and logistic regression. For the datasets, we used a
real dataset with data for credit card fraud detection, and then
we created a synthetic version of that dataset with one of
WEKA’s synthetic data generators, trying to ”recreate” the
original dataset as closely as possible.

Once the tasks were set up, they were ran on a computer
without any special capabilities, and the energy consumption
of each algorithm while training on each dataset was measured
using GSMP, FEETINGS’ energy measuring methodology [3].
The analysis of the measurements showed that the models that
were trained on the synthetic dataset consistently consumed
less energy than the models trained on real data, both when
they were run on MOA and on WEKA. The percentage of

Intl. Summer School on Search- and Machine Learning-based Software Engineering

19

correct predictions for the models trained on the synthetic data
was less than 10% lower than for the models trained with real
data.

B. Choice of model

It is known that some ML models are more suited to perform
certain tasks, while being less apt for others. For this case, we
propose that the choice of a ML model that is adequate for the
task at hand is also a relevant choice for its energy efficiency,
and not just for its performance.

REFERENCES

[1] Albert Bifet et al. “MOA: Massive Online Analysis”. In:
The Journal of Machine Learning Research 11 (Aug.
2010), pp. 1601–1604. ISSN: 1532-4435.

[2] Eva Garcı́a-Martı́n et al. “Estimation of energy consump-
tion in machine learning”. en. In: Journal of Parallel
and Distributed Computing 134 (Dec. 2019), pp. 75–88.
ISSN: 07437315. DOI: 10 . 1016 / j . jpdc . 2019 . 07 . 007.
URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S0743731518308773 (visited on 01/26/2022).

[3] Javier Mancebo et al. “FEETINGS: Framework for En-
ergy Efficiency Testing to Improve Environmental Goal
of the Software”. en. In: Sustainable Computing: Infor-
matics and Systems 30 (June 2021), p. 100558. ISSN:
2210-5379. DOI: 10.1016/j.suscom.2021.100558. URL:
https : / / www . sciencedirect . com / science / article / pii /
S2210537921000494 (visited on 02/04/2022).

[4] Parallel File System Products — WEKA. URL: https :
/ / www . weka . io / parallel - file - system/ (visited on
06/10/2022).

[5] Roy Schwartz et al. “Green AI”. en. In: Communications
of the ACM 63.12 (Nov. 2020), pp. 54–63. ISSN: 0001-
0782, 1557-7317. DOI: 10.1145/3381831. URL: https://
dl.acm.org/doi/10.1145/3381831 (visited on 01/25/2022).

Intl. Summer School on Search- and Machine Learning-based Software Engineering

20

Discovery Service Federation in the Web of Things

Juan Alberto Llopis
Applied Computing Group (TIC-211),

University of Almerı́a
Almerı́a, Spain

jalbertollopis@ual.es

Javier Criado
Applied Computing Group (TIC-211),

University of Almerı́a
Almerı́a, Spain

javi.criado@ual.es

Luis Iribarne
Applied Computing Group (TIC-211),

University of Almerı́a
Almerı́a, Spain

luis.iribarne@ual.es

Abstract—As the number of technological devices in our
environment increases, the need for mechanisms to facilitate
their use becomes more evident. A large part of these devices
are Internet of Things (IoT) devices, devices that are accessible
through a wide set of technologies, protocols and applications. To
homogenize the representation, communication and management
of IoT systems, web technology offers a series of mechanisms that
facilitates the construction of heterogeneous systems. Inspired by
this idea, the Web of Things (WoT) concept is an IoT approach
that uses web technology to create a representation of physical
entities in digital space. To perform the integration between both
spaces, it is necessary to identify the devices or physical entities
deployed and to establish a communication between the physical
and digital space. Therefore, there is a need for a mechanism
that allows applications and entities to obtain or discover services
that meet their requirements. In this PhD thesis, we propose a
federated discovery service for the WoT, capable of finding and
registering WoT devices within reach of the discovery service or
available in other discovery services. In a federated discovery
service, when searching for devices, a device can be located in
the same discovery service or other discovery services. Therefore,
a criterion has to be established to select between (a) devices in
a discovery service, (b) devices in different discovery services;
and (c) discovery services. The proposed discovery service uses
a recommender system to suggest devices that best suit the
user’s requirements. This work can reduce the workload of the
development of Smart solutions by facilitating the discovery of
WoT devices and by reducing the use of energy due to device
response calls.

I. INTRODUCTION

With the increase in the number of deployed Internet of
Things (IoT) devices and with the integration of the physical
and digital space to represent physical entities on the web,
searching for devices has become more difficult [1]. The
Web of Things (WoT) is an approach that homogenizes the
representation, communication and management of IoT sys-
tems, facilitating the interaction between devices and external
entities [2]. However, there is still a problem when looking
for devices, due to the increasing number of devices, the use
of techniques to improve the search process is desired.

When searching for services, discovery services were de-
veloped to facilitate the search for services that meet certain
requirements among a large number of services offered [3].

This work has been funded by the EU ERDF and the Andalusian Govern-
ment (Spain) under the project I+D UrbanITA, ref. PY20 00809. Juan Alberto
Llopis has been funded by a grant of the Spanish Government FPU19/0072.

Discovery services make use of a repository or directory that
stores the descriptions of the set of services it manages, avoid-
ing the need to define them multiple times, and facilitating
their access and use by interested applications or entities [4].
This reduces the number of requests made directly on devices,
reducing the energy usage of the devices and increasing their
usage time [5]. Discovery services in the field of service-
oriented architectures (SOA) are a mechanism widely used
by the community [6], [7]. In the IoT domain, there are
also approaches that provide some middleware and Content
Distribution Networks (CDNs) for service discovery [8], [9].
However, there are still no discovery services in the WoT
domain that take into account needed features in these systems
such as interoperability, security or service heterogeneity,
among other possible examples [10], [11].

In this PhD thesis, we propose a discovery service federation
for the WoT, capable of delegating and extending queries
to other discovery services when a discovery service is not
able to answer a query. In this way, the proposed discovery
service will not only allow identification, classification and use
of the available entities but will also allow the discovery of
these entities through other discovery services. In addition,
a discovery service can be ineffective if the queries are
not constructed correctly. Therefore, the research analyzes
techniques to perform query mutation, so that a query that does
not obtain results can be automatically modified by creating
variants of that query to discover devices.

Finally, based on a request sent by a client, and taking into
account the matching conditions, a discovery service returns a
set of devices that meet the client’s requirements. The returned
set of devices can be ordered, prioritized, and/or filtered to
allow the selection of the best alternative. Such selection
may be based on criteria that look at various features, such
as user preferences, usage history, or other information of
interest to the application domain. For this reason, this PhD
thesis will incorporate the application of recommender systems
to be able to suggest the best alternatives during service
discovery [12]. Figure 1 shows the proposed linkage between
federated discovery systems and recommender systems. The
recommender system will use Artificial Intelligence (AI) to
recommend devices from queries in the form of a natural
language sentence.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

21

Fig. 1. Federated discovery services and recommender systems for WoT resources.

II. HYPOTHESIS AND OBJECTIVES

This thesis aims to study the possibility of implementing
a federated discovery service that solves the identification of
services, taking into account features such as interoperability,
security and heterogeneity of services. Furthermore, the dis-
covery service makes use of other discovery services to search
for devices deployed in different locations. Finally, the system
must be able to build, simulate and validate devices using
their Thing Description, providing a configuration generation
for deploying IoT devices in smart buildings. The following
are the specific objectives, all of them in the Web of Things
domain:
(a) To analyze and experiment with protocols and ontologies

of service identification and classification.
(b) To experiment with the identification of services using

other discovery services and provide a solution for the
communication between discovery services.

(c) Establish a federated system in the discovery service
and study the use of the compatibility rate in service
discovery.

(d) Provide a repository solution and define the configuration
generation system based on the Discovered Services.

(e) Integrate concepts of recommender systems and discov-
ery services.

(f) Study particular aspects such as query mutation, data
quality, ontologies, interoperability and security.

Objectives (a), (d) and (f) are partially completed with
publications in national and international conferences. We
expect to finish objectives (a) and (d) before the end of the
year. Regarding objectives (b), (c) and (e); currently, we are
working on (e), which we expect to finish this year with
publications in journals. Finally, objectives about creating a
federated discovery service, (b) and (c), will be solved in 2023
and 2024 as the ending of the thesis.

REFERENCES

[1] N. K. Tran, Q. Z. Sheng, M. A. Babar, and L. Yao, “Searching the web
of things: State of the art, challenges, and solutions,” ACM Comput.
Surv., vol. 50, aug 2017.

[2] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in 2010 Internet of Things (IOT), pp. 1–8, 2010.

[3] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
vol. 40, no. 11, pp. 38–45, 2007.

[4] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone,
and L. Veltri, “A scalable and self-configuring architecture for service
discovery in the internet of things,” IEEE Internet of Things Journal,
vol. 1, no. 5, pp. 508–521, 2014.

[5] G. Tanganelli, C. Vallati, and E. Mingozzi, “Edge-centric distributed
discovery and access in the internet of things,” IEEE Internet of Things
Journal, vol. 5, no. 1, pp. 425–438, 2018.

[6] M. Crasso, A. Zunino, and M. Campo, “A survey of approaches to web
service discovery in service-oriented architectures,” Journal of Database
Management, vol. 22, no. 1, pp. 102–132, 2011.

[7] S. Dasgupta, A. Aroor, F. Shen, and Y. Lee, “Smartspace: Multiagent
based distributed platform for semantic service discovery,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 7,
pp. 805–821, 2014.

[8] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“Iot middleware: A survey on issues and enabling technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, 2017.

[9] A. Forestiero, “A smart discovery service in internet of things using
swarm intelligence,” in Theory and Practice of Natural Computing
(C. Martı́n-Vide, R. Neruda, and M. A. Vega-Rodrı́guez, eds.), (Cham),
pp. 75–86, Springer International Publishing, 2017.

[10] M. Aziez, S. Benharzallah, and H. Bennoui, “Service discovery for
the internet of things: Comparison study of the approaches,” in 2017
4th International Conference on Control, Decision and Information
Technologies (CoDIT), pp. 0599–0604, 2017.

[11] B. Pourghebleh, V. Hayyolalam, and A. Aghaei Anvigh, “Service
discovery in the internet of things: review of current trends and research
challenges,” Wireless Networks, vol. 26, pp. 5371–5391, OCT 2020.

[12] N. N. Chan, W. Gaaloul, and S. Tata, “A recommender system based
on historical usage data for web service discovery,” Service Oriented
Computing and Applications, vol. 6, pp. 51–63, MAR 2013.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

22

SmartTLC: Towards Smart Traffic Light Systems
José R. Lozano-Pinilla

QSEG, Universidad de Extremadura, Spain
Email: joserralp@unex.es

C. Vicente-Chicote
QSEG, Universidad de Extremadura, Spain

Email: cristinav@unex.es

Abstract—The increasing number of fuel-based vehicles has
several negative impacts on the environment, the economy and
the citizen’s daily life, being the largest contributor to Green-
House Gas (GHG) emissions, mostly due to traffic congestion.
Actually, more and more cities are deploying ICT-based
infrastructures to monitor the traffic and its environmental
impact (air pollution, noise, etc.). In this line, this paper
describes SmartTLC: a software framework, aimed at enabling
the simulation and comparison of different traffic light adaptive
control algorithms based on traffic data (either historical,
real-time or both). This framework allows designers to select
the best traffic light control strategy for different situations,
indicating which one achieves better results in terms of reducing
traffic congestion. The experimental results obtained so far
demonstrate that the adoption of a context-aware adaptive
approach significantly improves traffic fluidity, reducing vehicle
waiting time, in particular, in roads with a higher traffic demand.

I. INTRODUCTION

The increasingly growing number of vehicles, nowadays
mostly fuel-based, has important negative impacts not only in
the environment and in the personal and global economy, but
also in our daily life [1]. In 2019, the transportation sector was
the largest contributor to Green-House Gas (GHG) emissions,
accounting up to 23% in Europe (29% in the USA) of the total
GHG emissions. Up to 82% of these emissions were produced
by light-duty vehicles (58%) and medium and heavy trucks
(24%) [2], although these are not homogeneously distributed
across all continents, countries and regions [3].

According to the International Energy Outlook 2021 [4],
electric vehicles currently make up only 30% of the 1.446
billion cars estimated on Earth in 2022 [3]. Furthermore, the
report seriously warns that emissions from the transportation
sector are expected to increase through 2050 unless world
leaders establish legal and regulatory changes. In this context,
the implementation of new mobility management policies
becomes an urgent must.

II. HYPOTHESIS

In this work we propose a smart traffic light control
system aimed at helping designers analyze how different
traffic light strategies behave in different situations and select
the one that provides better results in terms of alleviating
traffic congestion. Addressing this issue is a highly complex
challenge that involves (1) context-awareness, enabling real-
time mobility monitoring (road demand, average waiting time,
GHG emissions, etc.); (2) the identification of (eventually
changing) traffic patterns; and (3) the adequacy of the road

infrastructures and of the traffic lights that control the vehicular
(and pedestrian) flows in urban environments.

Appropriately processing the context data provided by road-
located IoT sensors can be useful (1) to predict future road
demands and adequately plan and design the required infras-
tructures; (2) to identify relevant traffic patterns (e.g., daily
peak hours) in order to schedule the best (predefined) traffic
light control policies; and (3) to react to unforeseen situations
(e.g., an unexpected increase of road demand), enabling the
dynamic adaptation of the traffic light control strategy.

III. OBJECTIVES

The SmartTLC framework is targeted at helping designers
simulate different traffic conditions and analyze which traffic
light control algorithm performs better in each of them. To
achieve this goal, SmartTLC can use either (1) the information
about the real-time traffic conditions provided by (real or
simulated) IoT sensors; (2) predictions based on the traffic
patterns learnt from a historical traffic dataset; or (3) both.
Based on this information, the framework allows designers to
simulate different traffic light control algorithms to find out
which one achieves a higher vehicle waiting time reduction.
It is worth noting that reducing vehicle waiting time can
also indirectly improve other metrics such as air and noise
pollution, fuel consumption, etc.

In this work, both the traffic conditions and the results of
applying four different traffic light control algorithms were
simulated using the SUMO framework [5].

IV. SCENARIO

The scenarios defined to test the SmartTLC framework
are based on four different concepts: (1) the network topol-
ogy, representing roads, lanes, signals and traffic regulations;
(2) the vehicular traffic types, representing different traffic
intensities (vehicles per hour), along with a numeric range
to support traffic uncertainty; (3) the traffic light algorithms,
where the green phase can be calculated in different ways;
and (4) the traffic time patterns, representing how the traffic
evolves during a day. The scenario defined for this preliminary
study considered: (1) a topology with a single junction, where
vehicles could only travel north-south (NS) or east-west (EW),
i.e., turns were not supported; (2) four different traffic types,
each one defining a range of vehicles per hour from 1-5 (very
low) to 350-650 (high); (3) four different traffic light control
approaches, including a basic fix-cycle one and three adaptive
algorithms based, in turn, on historical traffic data, real-time

Intl. Summer School on Search- and Machine Learning-based Software Engineering

23

traffic data and a combination of both; and (4) 10 traffic
patterns covering regular week days, weekends, bank holidays
and summer holidays, among others.

V. LEARNING TRAFFIC PATTERNS

Based on the 10 traffic patterns previously mentioned, a 1-
year traffic dataset was generated. For each day, depending on
its traffic pattern (week day, weekend day, etc.), the traffic
was randomly generated according to the different traffic
intensities established per hour. In order to add some more
randomness and realism to the data, a “noise” policy consisting
in swapping the traffic patterns of a few (randomly selected
days) and, within a few days, the traffic intensities defined by
the corresponding pattern, was implemented.

The generated traffic dataset was used to train the “Traffic
Light Predictor” component of the SmartTLC framework so
that it could predict the traffic pattern at any given date and
hour. Five machine learning models were trained using this
data: (1) Naive Gaussian Bayes (NGB); (2) Support Vector
Machines (SVM) both linear and polynomial; (3) K-Nearest
Neighbors (KNN); (4) Decision Trees (DT); and (5) Random
Forest (RF). These models were trained both using only time-
related information (hour, day, month and year) and extending
it with traffic-related information (actual vehicles passing per
hour). An hyperparameter tuning approach was used in order
to achieve even better predictions.

The complete results achieved using the five different mod-
els, in terms of elapsed time and F1 score, are available
in [6](section 5.2.3). As expected, using both time- and traffic-
related information achieves much better results. The best
model using only time-related information was DT (F1 score
0.6924), while the best one using both time- and traffic-related
information was KNN (F1 score 0.9998). The fastest one was
DT in both cases (0.0010 seconds).

VI. RESULTS

We have considered four different traffic light control al-
gorithms. The “no-adaptation” approach, based on a fixed-
cycle with green and red phases of identical duration (common
approach in most current traffic lights), was developed to be
used as a reference baseline. Then, the other three algorithms
implemented an adaptive approach consisting in proportionally
increasing the duration of the green phase for the direction
with a higher traffic intensity. The main difference among
these three algorithms is how they identify the current traffic
demand: (1) the “date-based” approach predicts the current
traffic intensity based only on historical data (e.g., if today
it is Monday and it is 14:00, the traffic intensities NS and
EW are likely to be high and medium, respectively. Thus,
increase the duration of the green phase for NS). As expected,
this approach performs much better than the no-adaptation
approach when the traffic behaves more or less as predicted
(hopefully, most of the time). However, if it doesn’t, it may
eventually worse traffic congestion. The main benefit of this
approach is that it does not require real-time traffic monitoring
(which can be economically quite expensive), although it

requires a dataset generation and a traffic pattern learning
process (both computationally expensive); conversely, (2) the
“real-time” approach adapts the traffic lights based only on
real-time data. Obviously, this approach performs much better
than the two previous ones as it takes into account actual (vs
predicted) traffic conditions and, thus, can instantly react to
changes. In this case, benefits and limitations are opposite to
those described for (2). Finally, (3) the “combined” approach
uses both historical and real-time data to adapt the traffic light
phases. The results achieved in this case are almost identical to
those obtained by (2). However, this approach allows adapting
the real-time monitoring frequency, relaxing it when the traffic
behaves more or less as predicted, and increasing it when not.

VII. CONCLUSION AND FUTURE WORKS

The results achieved in this preliminary research demon-
strate that, even when no real-time data is available (either
because there is no monitoring infrastructure or because it
eventually fails), it is possible to reduce traffic congestion
using historical data and learning traffic patterns from it.
Furthermore, when real-time data is available, it is possible
to use predicted traffic patterns to lower the computational
load required to monitor the traffic conditions and dynamically
adapt the traffic lights accordingly. It is worth mentioning that
the SmartTLC framework, developed as part of this work,
has been designed to be easily extended, supporting arbitrary
complex topologies, new traffic patterns, and traffic light
control strategies. A detailed description of the SmartTLC
framework can be found in [6], and its implementation can
be downloaded from [7].

Some future works include: (1) enriching the scenarios with
pedestrians and new types of vehicles; (2) considering special
adaptation policies for emergency vehicles (e.g., fire trucks
or ambulances); (3) supporting additional traffic light control
algorithms; (4) using more complex artificial intelligence mod-
els to predict traffic intensity; (5) running simulations on more
complex topologies and allowing drivers to perform additional
actions (e.g., turn both left and right, overtaking, etc.); and
(6) model how the traffic information obtained in a particular
junction can be propagated to neighbor ones considering their
distance, possible escapes and new traffic contributions from
non-monitored roads, etc.

REFERENCES

[1] EIT for Urban Mobility: Solving the mobility challenges facing our cities
together, https://www.eiturbanmobility.eu/ (2021).

[2] U. S. EPA: Fast Facts on Transportation Green-
house Gas Emissions, https://www.epa.gov/greenvehicles/
fast-facts-transportation-greenhouse-gas-emissions (2021).

[3] Hedges Company: How many cars are in the world in 2022:
Market Research, https://hedgescompany.com/blog/2021/06/
how-many-cars-are-there-in-the-world/ (2021).

[4] U. S. EIA: International Energy Outlook 2021, https://www.eia.gov/
outlooks/ieo/index.php (2021).

[5] Eclipse SUMO. https://www.eclipse.org/sumo/.
[6] Lozano Pinilla, José R. SmartTLC: A Smart Traffic Light Control System

for Urban Environments. MSc. Thesis (2022).
[7] Lozano Pinilla, José R., SmartTLC Implementation (2022).

Intl. Summer School on Search- and Machine Learning-based Software Engineering

24

Transforming Mobile Software Ecosystems with
Semi-Automatic Feature Integration through

Dialogue-Based Feedback
Quim Motger
PhD Student

Department of Service and
Information System Engineering

Universitat Politècnica de Catalunya
Barcelona, Catalonia, Spain

jmotger@essi.upc.edu

Xavier Franch
Co-supervisor

Department of Service and
Information System Engineering

Universitat Politècnica de Catalunya
Barcelona, Catalonia, Spain

franch@essi.upc.edu

Jordi Marco
Co-supervisor

Department of Computer Science
Universitat Politècnica de Catalunya

Barcelona, Catalonia, Spain
jmarco@cs.upc.edu

Abstract—Mobile applications have become a daily-use com-
modity worldwide. Users need to manage a wide variety of com-
plex use cases using multiple, isolated applications in combination
to achieve higher, more complex goals. As each user’s goals are
unique, defining these integrations becomes a challenging task.
To address these challenges, users can play a proactive role by
providing valuable feedback for runtime integration. Hence, the
use of conversational agents to assist users by collecting natural
language feedback can be considered as a key research trend
towards this end. Following a design science methodology, we aim
at exploring how the integration of mobile application features
can be better supported by actively integrating users through
dialogue-based feedback collection techniques. To this end, we
define the following scientific objectives: (1) transforming mobile
applications with automatic feature integration mechanisms; (2)
generating natural language data-sets for training conversational
agents in the context of mobile software ecosystems; and (3)
designing explicit feedback collection techniques for feature inte-
gration. We envisage that our research will contribute to explore
the potential of users’ natural language feedback for personalized
software experiences in the context of mobile software ecosystems.

I. INTRODUCTION AND MOTIVATION

With the adoption of smartphone devices as ubiquitous tools
for both personal and professional use cases [1], mobile soft-
ware ecosystems [2] have become complex, heterogeneous and
constantly-evolving environments, with particular challenges
from the user experience perspective. As users’ goals and
needs are unique, managing and fully exploiting the potential
of the applications’ portfolio is a challenging task, which
includes the ability of such systems to adapt hardware and
software components to match the users’ needs [3]. Despite
the intrinsic interconnectivity between mobile apps and their
features, there is a lack of focused research in the field of
cross-app feature integration, and these strategies vaguely offer
any customization to extend mobile software ecosystems in
order to deliver personalized feature integration paradigms. To
achieve a highly personalized, customizable user experience
in terms of feature integration, actively involving the user

is fundamental to learn about their unique goals and needs.
To this end, effective analysis of explicit user feedback in
adaptive software systems is a fundamental strategy in adaptive
software systems [4], to which the use of natural language
interfaces or conversational agents is emerging as a leading
research trend in a wide variety of domains [5], [6].

Based on this context, in this paper, we summarize the
objectives, research questions and initial results of the the-
sis titled “Transforming Mobile Software Ecosystems with
Semi-Automatic Feature Integration through Dialogue-Based
Feedback”. This research is intended to explore how the
integration of a mobile-based conversational agent can be used
to provide personalized user experiences in terms of cross-
app feature integration among the applications’ portfolio of
mobile users. We expect that our research will contribute
to lay the groundwork for future research both in adaptive
mobile software ecosystems and the adoption of personalized
conversational agents.

II. RESEARCH METHOD

The research method is based on an adaptation of the
Design Science methodology for Information Systems and
Software Engineering as defined by Wieringa [7]. We designed
a research plan based on three research process iterations, in-
cluding the following activities: (i) definition of objectives; (ii)
design and development; (iii) demonstration; (iv) evaluation
and verification; and (v) dissemination.

Following the Goal Question Metric (GQM) template, we
state the general objective of this project as follows:

Analyze feature integration supported by dialogue-based feedback
for the purpose of enhancing and personalizing the user experience
with respect to cross-app feature integration
from the point of view of users
in the context of mobile software ecosystems.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

25

To guide the achievement of the aforementioned objective,
we have defined the following research questions (RQ):

RQ1. What is the current state of research in the field of feature
integration in mobile software ecosystems?

RQ2. What is the current state of research in the field of software-
based dialogue systems?

RQ3. How mobile app and feature integration can be better
supported by actively integrating users through dialogue-based
feedback collection techniques?

III. INITIAL RESULTS

A. RQ1: Mobile app feature integration

We conducted a state-of-the-art review of gray and white
literature in the field of mobile app feature integration. The
results of this narrative literature review demonstrate that
there are very few methodological and technical references to
feature and app integration in the context of mobile software
ecosystems which go beyond service and data integration
(i.e., focusing on functionalities). Some proposals like mashup
environments offer easy-to-use integration components, tools,
and services which are generally focused on service and data
integration. And while some approaches like MashReDroid [8]
define feature integration strategies, users are required to be
actively involved only by explicitly defining their own, specific
integrations following a record and replay strategy.

B. RQ2: Software-based dialogue systems

We conducted a systematic literature review of secondary
studies in the field of dialogue-based software systems [9].
The results of this review reinforce software-based dialogue
systems as an emerging trend in recent scientific literature.
The latest innovations in the field are focused on contextu-
alized, personalized dialogue experiences not only through
more advanced natural language understanding strategies (e.g.,
transformer models) but also through the integration of con-
versational agents as embedded subcomponents into large,
complex software systems. Consequently, contextualization
and personalization are perceived as key features to achieve
higher user adherence and user satisfaction.

C. RQ3: Feature integration through dialogue-based feedback

Using the conclusions from RQ1 and RQ2 as a proxy, we
refined three scientific objectives based on the general objec-
tive (as presented in Section II). We additionally identified
three scientific objectives based on the research objective:

• Design and develop a mobile app repository for the man-
agement, transformation and delivery of mobile applica-
tions with semi-automatic feature integration capabilities.

• Integrate metadata and natural language data collection,
data modelling and data storage techniques in order to
build a natural language understanding data-set for a
domain-specific sub-set of mobile applications.

• Design and develop a mobile-based conversational agent
to facilitate personalized, contextualized mobile feature

integrations using dialogue-based feedback collection
techniques.

During the first iteration of the research process, we have
focused on analyzing and adopting the required technologies
to build our solution, as well as to develop proof-of-concept
(PoC) data-sets, artifacts, tools, and processes for each of the
software components composing the solution. Specifically:

• Data collection service based on the automatic explo-
ration of APIs, app stores and web scrapping of mobile
apps search engines and catalogs for the collection of nat-
ural language related data (e.g., app descriptions, reviews,
official websites...).

• Repository of mobile app metadata and natural language
data fields using a knowledge graph data model strategy.

• Keyword extraction process for the automated recognition
of mobile app functionalities using natural language data
sources, based on syntactic and semantic natural language
processing techniques.

• Conversational agent based on an adaptive knowledge
base for discussions based on a personalized mobile
app catalog, including support for a proof-of-concept
integration of mobile features.

• Proof-of-concept integration between two features of two
open-source native Android applications.

• Draft model for structuring, documenting and maintaining
personalized feature integrations for a specific user in a
specific domain.

ACKNOWLEDGMENT

With the support from the Secretariat for Universities and
Research of the Ministry of Business and Knowledge of
the Government of Catalonia and the European Social Fund.
This paper has been funded by the Spanish Ministerio de
Ciencia e Innovación under project / funding scheme PID2020-
117191RB-I00 / AEI/10.13039/501100011033.

REFERENCES

[1] K. Bahia and A. Delaporte, “The state of mobile internet connectivity
report 2020 - mobile for development,” 2021. [Online]. Available:
https://www.gsma.com/r/somic/

[2] E. M. Grua, I. Malavolta, and P. Lago, “Self-adaptation in mobile apps:
a systematic literature study,” in 2019 IEEE/ACM 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2019.

[3] Q. Motger, X. Franch, and J. Marco, “Integrating adaptive mechanisms
into mobile applications exploiting user feedback,” in Research Chal-
lenges in Information Science, Cham, 2021.

[4] K. Jasberg and S. Sizov, “Human uncertainty in explicit user feedback
and its impact on the comparative evaluations of accurate prediction and
personalisation,” Behaviour & Information Technology, 2020.

[5] Nivethan and S. Sankar, “Sentiment analysis and deep learning based
chatbot for user feedback,” in Intelligent Communication Technologies
and Virtual Mobile Networks. Springer International Publishing, 2019.

[6] C. Liu, B. Zhang, and G. Peng, “A systematic review of information
quality of artificial intelligence based conversational agents in healthcare,”
in Distributed, Ambient and Pervasive Interactions, 2021.

[7] R. J. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. Springer Berlin Heidelberg, 2014.

[8] J. Zheng, L. Shen, X. Peng, H. Zeng, and W. Zhao, “MashReDroid:
enabling end-user creation of Android mashups based on record and
replay,” Science China Information Sciences, vol. 63, no. 10, 2020.

[9] Q. Motger, X. Franch, and J. Marco, “Software-based dialogue systems:
Survey, taxonomy and challenges,” ACM Comput. Surv., 2022.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

26

New ideas and work in progress

27

BLEU it All Away!
Refocusing SE ML on the Homo Sapiens

Leonhard Applis
TU Delft

L.H.Applis@tudelft.nl

Abstract—Many tasks in machine learning for software en-
gineering rely on prominent NLP metrics, such as the BLEU
score. The metrics are under heavy criticism themselves within
the NLP community, but the SE community adapted them for
lack of better alternatives. Within this paper, we summarize some
of the problems with common metrics at the examples of code
and look for alternatives. We argue that our only hope is the
worst of all possible options: Humans.

I. INTRODUCTION

In ancient Greece, Hephaistos was accompanied by servant
automatons to help around his forge, freeing him to spent his
time on true masterpieces. This Hellenic ideal of automation
lives up to this day and has its renaissance with software
engineers: Tedious tasks such as writing tests [1] or docu-
mentation [2] are shifted towards automation to give room for
the developers creativity. The narrative is great — the results
are often humbling. Presentations for Githubs CoPilot [3] pick
cherries, but thorough investigations usually lead to disturbing
or amusing results. How did we end up here ?
One issue are the metrics. For this paper we focus on Docu-
mentation Generation [2], which is lately often interpreted as
a translation task from source code to human language (i.e.
English) and draws a lot from NLP research, such as sequence-
to-sequence models [4] but also the most common metric
BLEU [5]. In recent work, Gehrmann et al. [6] criticized the
metric driven approaches and publications in NLP (specifically
generation tasks). Among their primary findings are that a
people blindly use existing datasets without manual inspection,
sampling, etc. b people rarely inspect output manually or
involve end-users c all publications use BLEU for lack of
better options or for acceptance at a venue. Gehrmann et al.
proposition is as compelling as it is easy: Instead of using big
data and arguably weak metrics, center the evaluation around
a group of expert users.
The remainder of this paper first highlights some flaws with
BLEU in documentation generation in Section II and elabo-
rates on the proposed solution in Section III. While we cover
only one domain briefly, we consider this to be a general
critique applicable for most domains. We close in Section IV
by arguing that we need to change the course of SE-ML-
Metrics, and while the proposal might not be perfect, it is
one we haven’t tried in a long time.

II. THE FLAWS

BLEU [5] is a metric to evaluate quality of translation and
text-generation techniques. It compares the overlap of n-grams

in a produced text compared to one or more reference texts,
where commonly a four-gram is used, as it correlates closest to
human acceptance [7]. There is wide criticism on BLEU [8],
[9], but we highlight issues specific to the domain of software
engineering:

1 While BLEU takes n-grams into account, many pieces
of programming language and documentation will produce a
solid score despite sometimes contrary meaning. With com-
mon tokenization, return (a + b) == (b - a); and return
(a - b) == (b + a); scores near perfect in BLEU. Some
publications opt for one-gram BLEU, for which the above
example gives an optimal match.

2 Eghbali et al. [10] investigated the BLEU-Scores of
randomly chosen samples from within different corpora. In
a corpus of English literature there was a BLEU of ≈20%,
comparing two random elements from Javas scores ≈40%.
This is stunning insofar as these numbers form the expected
baseline if we could produce random elements that follow
the same distribution. In their initial publication, CodeBERT
produces a BLEU-Score of 17.65% [2], which is 2.4% worse
than drawing random elements.

3 Unlike natural language, programming languages (and
their documentation) invent new words frequently. This is
known as the open vocabulary problem [11] and is addressed
in SE mostly by encodings. Prominent are BytePairEncod-
ing [11] and Subword-Splitting [12]. Both increase the number
of tokens - hitherto they benefit the BLEU score. It poses two
primary issues: 3a it is harder to evaluate and compare the

metric if evermore strings become attached. 3b the research
field itself becomes overburdened in experiment-complexity
only for the sake of metrics.

III. THE OPTIONS

One approach to address the issues is to blame the metric;
The BLEU is dead, long live the BLEU. One can easily
stitch together ”MetaBLEU” that combines normal BLEU
for language-representation and stopword-cleaned BLEU for
content-coverage. Similar fixes for BLEU have been pro-
posed [13], [10], [14], mostly ductaping the underlying prob-
lems. These are not done in bad faith, on the contrary they fit
perfectly in the current paradigm of ML publications — more
data, more features and better tuned models can be used with
the same benchmark and promise a safe academic voyage. But
as a research field, we will hit dead ends by the need for ever
more data, a cacophony of metrics and hungry computation.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

29

Fig. 1. Proposed Pipeline for SE Model Training

Apart from these issues, another question remains: Is a
model with good BLEU score useful? The only way to answer
this is to ask real humans, real users. Gehrmann et al. [6] come
to a similar conclusion and argue for model-cards based on
expert-based qualitative analysis. Theoretically there are few
fields easier to change evaluations than Software Engineering;
Software Engineers produce the data, ML-libraries, models,
metrics and are the final users.

The concrete suggestion (shown in Figure 1) is to start
models with metrics, and produce proto models that cover
a basic understanding of vocabulary and distributions. The
downstream-tasks should be tuned with humans in the loop, by
rating various aspects of the specific task (content, quality of
language, feedback time, inter-prediction quality, etc.). Rating-
Criteria should be derived from and with the final users,
in a fashion like requirements engineering. This pipeline is
similar to e.g. CodeBERT [15], which learns general perplexity
on Code and then is fine-tuned for the specific task and
language. The BERT-Core and the Code-Addition would form
the proto model and the downstream-task of documentation
generation would be done in active learning with experts rating
samples, instead of blind metrics. Pieces for this novel pipeline
are available and tested [16], [17], and could themselves
make great use-cases for reinforcement learning and federated
learning.

IV. CONCLUSION

Following metrics down the rabbit hole lead us into a ML
wonderland of free publications — but for outsiders we are
just kids in an asylum. If our goal is to make models that
are useful to developers and help them in their business, the
only metric we really have to maximize is their feedback. No
developer tries to write documentation with a certain BLEU
score, hence we should turn our back on these proxy-metrics.
We should trust our users that they know what they want, and
change our own research to accommodate for their needs.

REFERENCES

[1] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 416–419.

[2] “Codexglue: A benchmark dataset and open challenge for code intelli-
gence,” 2020.

[3] Github. [Online]. Available: https://copilot.github.com/
[4] B. Li, M. Yan, X. Xia, X. Hu, G. Li, and D. Lo, DeepCommenter:

A Deep Code Comment Generation Tool with Hybrid Lexical and
Syntactical Information. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1571–1575. [Online]. Available:
https://doi.org/10.1145/3368089.3417926

[5] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[6] S. Gehrmann, E. Clark, and T. Sellam, “Repairing the cracked founda-
tion: A survey of obstacles in evaluation practices for generated text,”
arXiv preprint arXiv:2202.06935, 2022.

[7] D. Coughlin, “Correlating automated and human assessments of machine
translation quality,” in Proceedings of Machine Translation Summit IX:
Papers, 2003.

[8] C. Callison-Burch, M. Osborne, and P. Koehn, “Re-evaluating the role of
bleu in machine translation research,” in 11th conference of the european
chapter of the association for computational linguistics, 2006, pp. 249–
256.

[9] G. Doddington, “Automatic evaluation of machine translation quality
using n-gram co-occurrence statistics,” in Proceedings of the second
international conference on Human Language Technology Research,
2002, pp. 138–145.

[10] A. Eghbali and M. Pradel, “Crystalbleu: Precisely and efficiently
measuring the similarity of code,” 2022, 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE).
[Online]. Available: https://conf.researchr.org/details/icse-2022/icse-
2022-posters/14/CrystalBLEU-Precisely-and-Efficiently-Measuring-the-
Similarity-of-Code

[11] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code!= big vocabulary: Open-vocabulary models for source code,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE). IEEE, 2020, pp. 1073–1085.

[12] H. Babii, A. Janes, and R. Robbes, “Modeling vocabulary for big code
machine learning,” arXiv preprint arXiv:1904.01873, 2019.

[13] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[14] T. Sellam, D. Das, and A. P. Parikh, “Bleurt: Learning
robust metrics for text generation,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.04696

[15] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[16] B. Settles, “Active learning literature survey,” 2009.
[17] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learning:

A survey on enabling technologies, protocols, and applications,” IEEE
Access, vol. 8, pp. 140 699–140 725, 2020.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

30

Generating Complex Metamorphic Relations for
Cyber-Physical Systems with Genetic Programming

Jon Ayerdi∗, Valerio Terragni†, Aitor Arrieta∗, Paolo Tonella‡ and Maite Arratibel §

Mondragon Unibertsitatea∗, University of Auckland †, Università della Svizzera italiana (USI) ‡, Orona §
∗{jayerdi,aarrieta}@mondragon.edu, †v.terragni@auckland.ac.nz, ‡paolo.tonella@usi.ch, §marratibel@orona-group.com

Abstract—One of the major challenges of testing complex
Cyber-Physical Systems (CPS) is determining whether the be-
havior of the system on a particular test execution is correct
or not, the so called oracle problem. Metamorphic testing is an
alternative testing technique which can alleviate this problem by
reasoning over relations between the inputs and outputs of multi-
ple test executions, which are known as Metamorphic Relations
(MRs). However, defining effective MRs is a complicated task
which is error-prone and often requires domain-expertise and
knowledge about the system under test. In this paper, we present
an approach for the automatic generation of MRs based on
genetic programming. Our current implementation is specifically
tailored for generating MRs for performance testing CPSs, and
is based on previous work on the evolutionary generation of
program assertions. Furthermore, we propose an extension based
on our experience with this approach. We also present the results
obtained with an industrial case study in previous iterations of
this work, which have been promising thus far.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are complex heterogeneous
systems that integrate physical and software components [1].
The complexity of CPSs and their interactions with their
environment makes the definition of test oracles especially
challenging for them [2]. This inability to determine whether
these system’s behaviour is correct or not is known as the
oracle problem [3].

We present an automated approach to mitigate the oracle
problem in an industrial case study from ORONA [4], one of
the leading elevator companies in Europe. We employ oracles
based on metamorphic testing, and we automate the definition
of these oracles by using genetic programming and samples of
correct and incorrect executions [5]. Based on our experience
and previous results, we also describe the future research
avenues to improve the approach and make it more applicable.

II. BACKGROUND

Metamorphic Testing aims to detect system failures by
defining necessary relations between the inputs and outputs
of two or more test executions, the so called Metamorphic
Relations (MRs) [6]. Typically, a single source test case
⟨Is, Os⟩ is executed, and then a follow-up test case ⟨If , Of ⟩
is generated such that Is and If satisfy the input relation.

An example MR derived for multi-elevator installations [7]
is that increasing the number of available elevators (E) should
reduce the average waiting time of the passengers (AWT),

since the system will have more resources to meet the trans-
portation demands. This MR can be expressed as:

Ef = Es ∪ E′ ⇒ AWTs ≥ AWTf

where Ef = Es ∪E′ is the input relation, which defines how
the follow-up test inputs relate with the source test inputs, and
AWTs ≥ AWTf is the output relation, i.e., the assertion that
defines whether the system’s behaviour is correct.

III. APPROACH

Manually defining MRs is, unfortunately, a difficult and
error-prone task which requires expertise with the system
under test. Because of this, we proposed GASSERTMRS [5],
a tool for automatically generating MRs by using samples of
correct and incorrect system behaviours.

GASSERTMRS is built based on GASSERT [8], a technique
to automatically generate or improve assertion oracles. GAS-
SERTMRS explores the space of candidate MRs with a co-
evolutionary algorithm introduced by GASSERT, which for-
mulates the oracle improvement problem as a multi-objective
optimization problem with three objectives of descending
priorities: (1) minimizing the number of false positives, (2)
minimizing the number of false negatives, and (3) minimizing
the complexity of the generated MRs. GASSERTMRS evolves
two populations of MRs in parallel: One which favors fewer
false positives first, and another which favors fewer false
negatives first. The remaining objectives are used to break ties,
with MR complexity being the lowest priority objective in all
cases. Both populations share genetic material by periodically
exchanging their best individuals.

GASSERTMRS employs user-defined input transformations,
and generates output relations of the following form:

Of [operator] F (Os, Is, If)

where Os and Of are the values for the output variable,
[operator] is a relational operator, Is and If are the input
variable values, and F is the expression generated by GAS-
SERTMRS. We generate MRs following this specific template
in order to improve the readability of the generated MRs and
greatly reduce the search-space for the algorithm.

The current implementation of GASSERTMRS supports
only boolean and numeric variables, constants and operators,
which can be limiting. For complex types, the variable can
often be decomposed or serialized into boolean and numeric
variables. For instance, an elevator passenger call (c) can be

Intl. Summer School on Search- and Machine Learning-based Software Engineering

31

destructured into the arrival time (c.timestamp), arrival floor
(c.source), and destination floor (c.destination).

Unfortunately, this solution is not ideal because it cannot
handle element collections, such as the lists of elevator po-
sitions (E) and passenger calls (C) from our elevation case
study [7]. The current workaround is to allow user-defined
functions to reduce the test inputs into domain-specific boolean
or numeric features, which can then be used to generate the
MRs [5]. For instance, TDworst(E1, E2) is a domain-specific
function which computes the distance between the elevator
positions E1 and E2 [7].

Our proposed solution, inspired by lambda calculus [9], is to
add higher-order functions such as fold, map and filter to
GASSERTMRS’s expression language to enable it to reason
on item sequences such as lists or sets. Implementing this
feature implies introducing the new sequence and function
types for expressions. The new function expressions could use
the following literal syntax:

[param1, param2, ...]{expression}
With this extension, all of the user-defined functions we use for
the elevation case study can be generated by GASSERTMRS,
meaning that there would be no need for the users to define
them. For example, TDworst(E1, E2) could be expressed by
GASSERTMRS as follows:

sum(map([e1, e2]{abs(e1 − e2)}, zip(E1, E2)))

here, zip(C1, C2) combines pairs of elements from C1 and C2

into a single sequence, map(F,C) applies the transformation
F to each of the elements from C, and sum(C) computes
the sum of all the elements from C. All of these are generic
functions which could be part of GASSERTMRS’s expression
language. The benefit of this extension is two-fold: Firstly,
GASSERTMRS becomes more expressive and generic, and
secondly, the implicit bias introduced by user-defined func-
tions is eliminated.

IV. PRELIMINARY RESULTS

We evaluated GASSERTMRS (with no support for higher-
order functions) on ORONA’s case study [5], comparing the
automatically generated MRs with ones that were manually
generated with the assistance from domain experts [7].

The same test suite and system variants with manually
seeded faults were used to evaluate both approaches. The
selected Metamorphic Relation Input Patterns (MRIPs), which
define the input relations of the MRs, were the following:

• MRIP1: An additional passenger call is appended.
• MRIP2: One or more additional elevators are enabled.
• MRIP3: The initial position of the elevators is changed.
Table I shows the results obtained by GASSERTMRS

compared with the manually generated MRs. This evaluation
shows that GASSERTMRS is able to generate non-trivial MRs
which dominate the results obtained by the manual MRs in
terms of both detected failure count and mutation score. Unlike
the manual MRs, the ones generated by GASSERTMRS did
have some FPs, but the median was always 0.

TABLE I
EVALUATION RESULTS (MEDIAN) [5]

MRIP Metric Operator Detected Failures Mutation Score
GAssertMRs Manual GAssertMRs Manual

MRIP1

AWT ≥ 16.5 13.0 11.80% 11.24%
≤ 28.0 14.0 14.61% 14.61%

TD ≥ 12.0 12.5 12.36% 13.48%
≤ 30.5 4.5 13.48% 5.06%

TM ≥ 20.0 7.5 16.85% 7.87%
≤ 9.0 0.0 4.49% 0.00%

MRIP2

AWT ≥ 11.0 0.0 7.87% 0.00%
≤ 74.0 74.0 19.10% 18.54%

TD ≥ 9.0 0.5 8.43% 0.56%
≤ 47.5 8.5 12.36% 9.55%

TM ≥ 2.0 1.5 1.12% 1.12%
≤ 22.0 2.0 8.99% 2.25%

MRIP3

AWT ≥ 28.5 1.5 13.48% 1.12%
≤ 50.0 0.0 19.10% 0.00%

TD ≥ 58.0 1.5 17.98% 1.69%
≤ 30.0 0.5 12.36% 0.56%

TM ≥ 16.0 0.5 7.87% 0.56%
≤ 19.0 0.0 2.25% 0.00%

In conclusion, GASSERTMRS appears to be a feasible
approach for generating effective MRs instead of manually
defining them.

V. CONCLUSION

This paper summarizes our approach to automatically gener-
ate MRs for CPSs by using correct/incorrect execution samples
and genetic programming. We also describe our experience of
using our implementation of this approach, GASSERTMRS, on
an industrial case study from the elevation domain provided
be ORONA. Furthermore, we point out the current limitations
that hinder the general adoption of this technique and present
the solutions which we intend to implement.

REFERENCES

[1] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, no. 1, pp. 161–166, 2011.

[2] A. Kane, T. Fuhrman, and P. Koopman, “Monitor based oracles for
cyber-physical system testing: Practical experience report,” in 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 2014, pp. 148–155.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE TSE, vol. 41, no. 5, pp.
507–525, 2014.

[4] Orona, “Orona group,” https://www.orona-group.com/, 2021.
[5] J. Ayerdi, V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, and

M. Arratibel, “Generating metamorphic relations for cyber-physical
systems with genetic programming: an industrial case study,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021, 2021, pp. 1264–1274. [Online].
Available: https://doi.org/10.1145/3468264.3473920

[6] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Technical Report HKUST-
CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

[7] J. Ayerdi, S. Segura, A. Arrieta, G. Sagardui, and M. Arratibel, “Qos-
aware metamorphic testing: An elevation case study,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020.

[8] V. Terragni, G. Jahangirova, P. Tonella, and M. Pezzè, “Evolutionary
improvement of assertion oracles,” in ESEC/FSE, 2020, pp. 1178–1189.

[9] H. P. Barendregt et al., The lambda calculus. North-Holland Amsterdam,
1984, vol. 3.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

32

Regression Testing for Self-driving Cars as
Cyber-physical Systems in Virtual Environments

Christian Birchler
Zurich University of Applied Sciences

Winterthur, Switzerland
birc@zhaw.ch

Abstract—Detecting bugs early in the software testing process
is crucial to lowering the costs. Testing cyber-physical systems
(CPS) is more expensive than traditional software systems, so
regression testing for CPS is a promising approach to deal
with the higher testing costs. Regression testing consists of test
selection, prioritization, and minimization. Our work focuses on
using self-driving cars (SDC) as a CPS use case.

First, we tackled the problem of test selection for CPS in
virtual environments. For this, we developed a tool to select
test scenarios from the test suite with machine-learning models
for SDCs. SDC-Scissor is a cost-effective test selector for SDC
software that can predict failing tests with an F1-score up to
96% and speed up the test execution in simulation by 170%.
This selection approach reduces the time spent for running tests
that likely pass but increases those that likely fail.

Secondly, to deal with the test prioritizing problem, we devel-
oped a multi-objective genetic algorithm called SDC-Prioritizer.
It finds the optimal test execution so that the diversity of tests
maximizes and the execution time minimizes. The evaluation of
SDC-Prioritizer shows that our approach outperforms a random
and a greedy baseline prioritizer statistically significantly. I.e.,
SDC-Prioritizer detects more defects as the baseline with the same
execution time. With this tool, the testing process is getting more
efficient by revealing more defects in a shorter time.

Both tools use labeled datasets of road scenarios that consist
of lists of consecutive road points for evaluation. The execution
of the scenarios labels the tests as safe or unsafe, i.e., if the SDC
is driving off the lane or not. Future work will minimize the test
scenarios and complete the regression testing framework.

I. INTRODUCTION

The future of mobility will be driven by Artificial Intel-
ligence (AI). There are several examples of the replacement
of humans with AIs [20], [24], [26]. In 2021, Tesla began to
deliver their SDCs that only rely on camera input [25]. The
AI that drives the car relies only on the camera data and the
according vision-based algorithms. These examples show the
direction toward autonomous mobility that heavily rely on AI
and algorithms.

However, some CPS, like SDCs are life-critical and require
proper testing. Several incidents with humans happened in the
past [18], [19], [21], [22] which clearly shows that some of
these incidents could have been prevented with proper testing.
Proper testing of CPS is also challenging [1], and several
studies have addressed already some aspects [9], [12], [27].

Nevertheless, testing CPS is still costly, especially in-field
tests and even simulation-based tests. In-field tests require
testing real, physical, and most likely also expensive hardware
in a real-world environment that might damage the test subject.

To mitigate this issue, testing in simulation environments can
prevent damaging the real test subject, but the computation
of the simulation environment is more expensive than testing
traditional software systems since complex computation re-
garding the virtual environment must be performed [13], [15].

We adapt the concept of regression testing to the CPS
domain for system-level testing in virtual environments. Our
contribution is a cost-effective test selector SDC-Scissor [7]
that covers the selection process in regression testing, whereas
SDC-Prioritizer [8] orders the selected test cases based on a
multi-objective genetic algorithm.

We aim to minimize the test scenarios to execute only
the critical part of a scenario. With this approach, we try to
minimize further the execution costs of tests in virtual environ-
ments. The work on test case minimization will complement
our central research vision:

Development of a regression testing framework for
cyber-physical systems.

This paper will give a brief overview of the related work,
methodology, preliminary results, and conclusion in Sec-
tions II, III, IV and, V respectively.

II. RELATED WORK

Several studies about testing CPS efficiently based on model
checking or simulations [10], [16], [23]. A more concrete ap-
proach proposes Humeniuk et al. [14] with a search-based test
generation. They applied a multi-objective search algorithm to
have diversity and track the deviation of the observed system’s
behavior from its expected behavior. A diverse test suite can
be generated for testing the lane-keeping ability of SDCs in
simulation.

First studies regarding regression testing for CPS have also
been performed [2]–[6], [17]. They tackled the problem of test
case selection and prioritization for different levels, e.g., MiL,
SiL, HiL, etc. The use cases mainly were CPS with different
configurations in product lines by applying different search
algorithms.

In our vision, we want to have a complete regression testing
framework for SDCs that includes test case selection, prior-
itization, and minimization. The techniques use ML models
and evolutionary genetic algorithms to minimize the costs in

Intl. Summer School on Search- and Machine Learning-based Software Engineering

33

the testing process. SDCs were not often considered use cases
in previous work, although SDCs are already a reality on our
streets.

III. METHODOLOGY

We run test scenarios in simulation to have a labeled dataset.
A single test case consists of road points defining the whole
road the SDC has to follow. The execution of simulation tests
allows to classify the tests as “safe” and “unsafe”. Several test
data are already publicly available [11].

The primary pipeline is provided by SDC-Scissor. The com-
ponents and APIs of SDC-Scissor allow modifying, adjusting,
or creating a pipeline for conducting experiments with SDCs
in virtual environments.

IV. PRELIMINARY RESULTS

SDC-Scissor is a cost-effective test selector for SDC soft-
ware that can predict failing tests with an F1 score of up to
96% and speed up the test execution in simulation by 170%.
This selection approach reduces the time spent running tests
that likely pass but increases those that likely fail.

The evaluation of the SDC-Prioritizer shows that our ap-
proach outperforms a random and greedy baseline prioritizer
statistically significantly. I.e., SDC-Prioritizer detects more
defects as the baseline with the same execution time. With this
tool, the testing process is getting more efficient by revealing
more defects in a shorter time.

V. CONCLUSIONS

Our ongoing work shows that we can improve test selection
and prioritization significantly. The testing process for SDCs
in virtual environments can be more time-efficient. The next
step towards our vision is to enable test case minimization for
SDCs in virtual environments sot that only relevant parts of a
virtual scenario are executed.

REFERENCES

[1] S. Abbaspour Asadollah, R. Inam, and H. Hansson. A survey on testing
for cyber physical system. In International Conference on Testing
Software and Systems, pages 194–207. IFIP, Springer, 2015.

[2] A. Arrieta, J. A. Agirre, and G. Sagardui. Seeding strategies for multi-
objective test case selection: an application on simulation-based testing.
In Genetic and Evolutionary Computation Conference, pages 1222–
1231. ACM, 2020.

[3] A. Arrieta, S. Wang, A. Arruabarrena, U. Markiegi, G. Sagardui, and
L. Etxeberria. Multi-objective black-box test case selection for cost-
effectively testing simulation models. In Genetic and Evolutionary
Computation Conference, pages 1411–1418. ACM, 2018.

[4] A. Arrieta, S. Wang, U. Markiegi, A. Arruabarrena, L. Etxeberria, and
G. Sagardui. Pareto efficient multi-objective black-box test case selection
for simulation-based testing. Information and Software Technology,
114:137–154, 2019.

[5] A. Arrieta, S. Wang, G. Sagardui, and L. Etxeberria. Search-based test
case selection of cyber-physical system product lines for simulation-
based validation. In International Systems and Software Product Line
Conference, pages 297–306, 2016.

[6] A. Arrieta, S. Wang, G. Sagardui, and L. Etxeberria. Search-based test
case prioritization for simulation-based testing of cyber-physical system
product lines. Journal of Systems and Software, 149:1–34, 2019.

[7] C. Birchler, N. Ganz, S. Khatiri, A. Gambi, and S. Panichella. Cost-
effective simulation-based test selection in self-driving cars software
with sdc-scissor. In IEEE International Conference on Software Analy-
sis, Evolution, and Reengineering. IEEE, 2022.

[8] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and
A. Panichella. Single and multi-objective test cases prioritiza-
tion for self-driving cars in virtual environments. arXiv preprint
arXiv:2107.09614v2, 2022.

[9] J. H. Castellanos and J. Zhou. A modular hybrid learning approach
for black-box security testing of cps. In International Conference on
Applied Cryptography and Network Security, pages 196–216. Springer,
2019.

[10] P. M. Chu, M. Wen, J. Park, H. Kaisi, and K. Cho. Three-dimensional
simulation for training autonomous vehicles in smart city environments.
In International Conference on Internet of Things and IEEE Green
Computing and Communications and IEEE Cyber, Physical and Social
Computing and IEEE Smart Data, pages 848–853. IEEE, 2019.

[11] P. Derakhshanfar, A. Panichella, A. Gambi, V. Riccio, C. Birchler, and
S. Panichella. TRAVEL: A Dataset with Toolchains for Test Generation
and Regression Testing of Self-driving Cars Software, Jan. 2022.

[12] J. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu.
Testing cyber-physical systems through bayesian optimization. ACM
Transactions on Embedded Computing Systems (TECS), 16(5s):1–18,
2017.

[13] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao, and S. Dyke. Cyber-
physical systems for real-time hybrid structural testing: a case study.
In International Conference on Cyber-physical Systems, pages 69–78.
ACM/IEEE, 2010.

[14] D. Humeniuk, F. Khomh, and G. Antoniol. A search-based framework
for automatic generation of testing environments for cyber-physical
systems. Information and Software Technology, page 106936, 2022.

[15] P. S. Kumar, W. Emfinger, and G. Karsai. A testbed to simulate and
analyze resilient cyber-physical systems. In International Symposium on
Rapid System Prototyping (RSP), pages 97–103. IEEE, 2015.

[16] T. Kuroiwa, Y. Aoyama, and N. Kushiro. Testing environment for cps by
cooperating model checking with execution testing. Procedia Computer
Science, 96:1341–1350, 2016.

[17] U. Markiegi, A. Arrieta, L. Etxeberria, and G. Sagardui. Dynamic test
prioritization of product lines: An application on configurable simulation
models. Software Quality Journal, 29(4):943–988, 2021.

[18] 2 killed in driverless tesla car crash, officials say. https://www.nytimes.
com/2021/04/18/business/tesla-fatal-crash-texas.html. Accessed: 2022-
01-28.

[19] Drohne krachte in zürich auf den boden - post bezeichnet
vorfall als inakzeptabel. https://www.nzz.ch/zuerich/
absturz-von-post-drohne-bericht-stellt-gravierende-maengel-fest-ld.
1492295?reduced=true. Accessed: 2022-02-08.

[20] J. O’Callaghan. Few aeroplanes land automatically
but new systems could make this the norm. https:
//ec.europa.eu/research-and-innovation/en/horizon-magazine/
few-aeroplanes-land-automatically-new-systems-could-make-norm,
October 2019. Accessed: 2022-06-25.

[21] After deadly 737 max crashes, damning whistleblower report reveals
sidelined engineers, scarcity of expertise, more. https://www.theregister.
com/2021/12/15/boeing 737 max senate report/. Accessed: 2022-01-
28.

[22] Post-drohne über zürichsee abgestürzt. https:
//www.srf.ch/news/regional/zuerich-schaffhausen/
blutprobe-verloren-post-drohne-ueber-zuerichsee-abgestuerzt.
Accessed: 2022-02-08.

[23] J. Sun and Z. Yang. Objsim: efficient testing of cyber-physical sys-
tems. In International Workshop on Testing, Analysis, and Verification
of Cyber-Physical Systems and Internet of Things, pages 1–2. ACM
SIGSOFT, 2020.

[24] Future of driving. https://www.tesla.com/autopilot. Accessed: 2022-06-
25.

[25] Transitioning to tesla vision. https://www.tesla.com/support/
transitioning-tesla-vision. Accessed: 2022-06-25.

[26] Waymo. https://waymo.com/. Accessed: 2022-06-25.
[27] X. Zhou, X. Gou, T. Huang, and S. Yang. Review on testing of cyber

physical systems: Methods and testbeds. IEEE Access, 6:52179–52194,
2018.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

34

Incremental Just-In-Time Test Generation in
Lock-Step with Code Development

Carolin Brandt
Delft University of Technology

c.e.brandt@tudelft.nl

Abstract—State-of-the-art test generation strategies employ ad-
vanced analyses of the code under test and powerful optimization
algorithms to generate automatic test cases for software systems.
As these techniques require a large amount of computational
power, they are often limited to generating tests after the code
under test is already written. However, today’s broad education
about the importance of software testing lets developers strive to
create test cases directly with new code they are contributing.

To support these developers, we want to develop an incre-
mental just-in-time test generation tool that works in close
proximity to the development of the code under test. Whenever
the developer creates a new class or functionality, the tool
automatically proposes a matching test case. When the developer
finishes implementing a new condition, the tool automatically
recommends an additional test case that tests the code which
was just added. The generated test cases are closely based on the
existing test cases in the project with small, incremental changes
to test the new lines of code.

To realize such a just-in-time test generation tool we have to
tackle many challenges: Detecting the completion of a test-worthy
condition, generating a fitting test case in a short time on the
developer’s machine, or effectively communicating the value of
the new test case to the developer. With the participants of the
SMILESENG Summer School we want discuss our new idea,
brainstorm on the challenges that this research opens up and
identify possible approaches to tackle them.

I. INTRODUCTION

To illustrate our idea of just-in-time test generation, let us
introduce this anecdotal use case: Think of Jada, a software
engineer in a large software development company. Her team
is working on an app for public transport trips and tickets. The
transport provider decided to introduce a new promotion: In
the summer months of 2022, each monthly pass will cost only
nine euros. Today, Jada’s task is to adapt the ticket selection
algorithm to propose the new ticket whenever the normal cost
of a trip would be more than nine euros. Jada opens the code
for the ticket selection component and adds a new condition
comparing the trip price to the promotional ticket price. After
finishing this new edge case, a notification pops up in the
corner of her editor:

“Do you want to add a test that a summer ticket is
proposed when it is cheaper than the normal fare?”

As their project policy requests all new code to be fully tested,
she is relieved to not have to write a test from scratch. She
selects “Inspect Test” and the editor opens on the test class of

This research was funded by the Dutch science foundation NWO through
the Vici “TestShift” grant (No. VI.C.182.032)

the ticket selection component. The new test is already added
to the source code and a green indicator shows her that the test
is passing. Jada reviews the new test case and is pleased that
here addition seems to work as she intended: An expensive
route—initialized just as in the other tests—is passed to the
selection, which then returns the summer ticket instead of the
normal ticket. She accepts the new test case and commits it
together with her changes. When creating the pull request, she
can be confident that all changes are already covered by the
test suite. And that mostly automated, thanks to the just-in-
time test generator!

This is one use case we envision for our new technology.
The just-in-time test generator closely follows the software
developer’s actions, identifies testable, test-worthy and fin-
ished scenarios, quickly generates matching test cases in the
background, and immediately presents these test cases to
the developer. The developer inspects the new test cases,
modifies them where they see fit and takes them over into
their maintained test suite.

Placing the test generation so close to the code development,
provides advantages in several known challenges of automatic
test generation:
• It narrows the search space by focusing the generation efforts

on the just modified code.
• It makes it easier for developers to understand the behavior

and coverage impact of the new test case, as they are still
in the mental context of the code under test [1].

• By generating the oracle through executing the just modified
code, the developer receives immediate feedback on the
actual behavior of their code and whether it matches with
the behavior they intended.

• This approach widens the application area of automatic test
generation to the initial development of code and directly
supports developers that aim to write test cases in conjunc-
tion with their production code (test-guided [2] or iterative
test-last development [3])

II. WHAT WE CAN BUILD UPON: RELATED WORK

The idea of just-in-time test generation is closely related test
suite augmentation [4]: adding new test cases to an existing
test suite in order to improve its code coverage. Code-to-test
traceability approaches [5], [6] can identify test cases that
execute code close to the just modified code and with the
help of symbolic execution and similar techniques we can
modify these base test cases to exercise the new scenario [7].

Intl. Summer School on Search- and Machine Learning-based Software Engineering

35

Powerful search-based test generation tools like EvoSuite [8]
are already able to generate whole test suites from scratch. To
apply them to just-in-time test generation, one would need to
investigate how existing test cases could be used effectively
as an initial population and how well the limited search space
can improve the runtime/generation quality towards interactive
performance. Test amplification [9] generates new test cases
by mutating the input stage of the test case and generating
assertions matching the new test behavior. In a previous study,
we investigated the interaction of software developers with
automated test amplification [1]. We saw that it is important to
give the developer control over the interaction, provide them
with the information necessary to judge the test cases and
effectively communicate the impact that the generated test case
will have on the quality of their test suite. Taking into account
the results of further user studies of test generation tools [10]–
[12], we conjecture that a strong focus on the design of the
user interaction is crucial for our just-in-time test generation
approach to be successful.

Machine learning approaches are gaining popularity also in
the area of automatic test generation, e.g. to generate assertion
statements [13], [14]. Recently, neural code completion tools
such as GitHub Copilot1 are able to propose fully fledged im-
plementations when triggered with a natural language method
name. Nonetheless, it remains to be investigated how effective
they are in generating useful test cases and which information
needs to be encoded in the trigger to steer the generation
towards the intended code under test.

III. DIVIDE AND CONQUER: STEPS TO TACKLE

On the way to fully-fledged just-in-time test generation we
see several challenges to be addressed. These could be the
basis for our discussion at the SMILESENG summer school,
together with the following questions:

Which further challenges do you see as part of realizing
just-in-time test generation?
What approaches should we explore to tackle them?
What chances or caveats do you see with these approaches?

• Cutting out a test-worthy condition / scenario as a target
for the test generation. Approaches could be detecting coher-
ent edits made by the developer, and learning from single-
concern commits or the coverage of existing test cases.
Together with the following test generation, this should be
a deterministic and transparent process to let the developer
build trust and understanding in the capabilities of our tool.

• Detecting the right moment to contact the developer
as well as giving them control to start and feed the tool
themselves.

• Rapid on-device generation to enable interactive coop-
eration between developer and tool. To speed up the test
generation, we propose to leverage incrementality: Building
upon existing test cases by modifying them only slightly. In

1https://copilot.github.com/

addition, we look at incremental compilation and building
to speed up a run of a test generation tool, as well as
explore ways to avoid the expensive executions of test cases
to measure adequacy metrics such as mutation score or
structural coverage.

IV. AN OUTLOOK INTO THE FUTURE

The possible applications of a just-in-time test generation
tool and its components will be much wider than just adding
test cases for new conditions in the code. We could propose
immediate updates to no-longer-passing test cases before the
developer reruns their tests after a change. We could determine
no longer needed test cases after large code cleanups and
propose suiting re-locations of test code after refactorings. In-
tegrating test generation right within the developer’s workflow
lets them become familiar with the advantages test generation
can offer and lets them gain trust in the capabilities of
(partially) automated software engineering.

While just-in-time test generation is still many steps away,
the development of each its subparts helps us strengthen and
better understand the area of automatic test generation and its
interaction with software developers. We are excited to present
our idea to the SMILESENG Summer School participants and
together discuss approaches to tackle it.

REFERENCES

[1] C. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, 2022.

[2] M. Beller et al., “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Softw. Eng., vol. 45, no. 3, 2019.

[3] A. Santos et al., “A family of experiments on test-driven development,”
Empir. Softw. Eng., vol. 26, no. 3, 2021.

[4] R. Bloem et al., “Automating test-suite augmentation,” in 2014 14th Int.
Conf. on Quality Softw. IEEE, 2014.

[5] N. Aljawabrah et al., “Understanding test-to-code traceability links: The
need for a better visualizing model,” in Computational Science and Its
Applications - 19th Int. Conf. Springer, 2019.

[6] B. V. Rompaey and S. Demeyer, “Establishing traceability links between
unit test cases and units under test,” in 13th European Conf. on Softw.
Maintenance and Reengineering. IEEE Computer Society, 2009.

[7] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed test
suite augmentation: techniques and tradeoffs,” in 18th ACM SIGSOFT
Int. Symp. on Foundations of Softw. Eng. ACM, 2010.

[8] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation
for object-oriented software,” in m19th ACM SIGSOFT Symp. on the
Foundations of Softw. Eng. ACM, 2011.

[9] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: A study with ten mature open-source
projects,” Empir. Softw. Eng., vol. 24, no. 4, 2019.

[10] M. M. Almasi et al., “An industrial evaluation of unit test generation:
Finding real faults in a financial application,” in 39th Int. Conf. on Softw.
Eng.: Softw. Eng. in Practice. IEEE Computer Society, 2017.

[11] S. Panichella et al., “The impact of test case summaries on bug fixing
performance: An empirical investigation,” in 38th Int. Conf. on Softw.
Eng. ACM, 2016.

[12] J. M. Rojas et al., “Automated unit test generation during software
development: A controlled experiment and think-aloud observations,”
in 2015 Int. Symp. on Softw. Testing and Analysis. ACM, 2015.

[13] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” in 42nd Int.
Conf. on Softw. Eng. ACM, 2020.

[14] H. Yu et al., “Automated assertion generation via information retrieval
and its integration with deep learning,” in 42th Int. Conf. on Softw. Eng.,
2022.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

36

Towards Bug Localization in Models in Game
Software Engineering

Rodrigo Casamayor, Lorena Arcega, Francisca Pérez, and Carlos Cetina
Universidad San Jorge

Escuela de Arquitectura y Tecnologı́a
Zaragoza, Spain

Email: rcasamayor@acm.org, {larcega, mfperez, ccetina}@usj.es

Abstract—Today, video game development is one of the fastest
growing industries in the world. Video games present character-
istics that differentiate their development and maintenance from
the development and maintenance of classic software. Nowadays,
most video games are developed by means of the so-called game
engines. A key artifact of game engines are software models.
Hence, the way in which testing is done must inevitably be
different in video games than in traditional software since the
artifacts used are also different. Current approaches for locating
bugs in software are focused on source code, while the approaches
needed to locate bugs in video games should consider other
artifacts such as software models. The lack of specific approaches
leads to a longer development time, which sometimes causes
delays in the deadlines and postponement of the launch date.
This results in the video game being released without having been
properly tested. In our work, we want to evaluate whether the bug
localization techniques applied to the models of classic software
engineering work in game software engineering. Specifically, we
want to leverage the use of evolutionary algorithms and explore
different fitness functions, such as textual similarity with the
bug reports and the defect localization principle. In addition, we
want to study the application of one of the main inherent features
underlying the video game domain to achieve bug location: the
simulations using non-player characters (NPC). It is common for
video games to include non-player characters that accompany
the player in the adventure, are the enemies to beat, or simply
populate the world recreated in the video game. These NPCs have
pre-programmed behaviors and can be used to launch gameplay
simulations.

I. INTRODUCTION

Today, video game development is one of the fastest grow-
ing industries in the world. Such is the relevance and depth that
video games have in our society that, if we put it in terms of
developer population, the video game industry is responsible
for 8.8M active developers as of 2019 [1]. According to the
same report, the total number of active software developers is
18.9M, so almost one out of every two developers is involved
in the games sector. Furthermore, video game development is
instrumental in achieving the vision of the Metaverse. This
might suggest that the number of video game developers will
continue to grow in the future as the Metaverse is developed.

Video games present characteristics that differentiate their
development and maintenance from the development and
maintenance of classic software [2]. Most video games are
developed by means of so called game engines. A game engine
refers to a development environment that integrates a graphics
engine and a physics engine as well as a set of tools that wraps

around them in order to accelerate development. Developers
can create video game content directly using code (e.g., C++)
or the software models of the engines.

Current approaches for locating bugs in software focus on
source code, while the approaches needed to locate bugs in
video games should consider other artifacts such as software
models [2]. Nevertheless, a fault localization survey [3] reveals
that none of the bug localization approaches consider models
as the source of the bugs, which poses a considerable problem
for developers since much of the video game content remains
unexplored. Actually, Politowski et al. argue that the way in
which developers deal with bugs must inevitably be different
in video games than in traditional software since the artifacts
used are also different [4].

The lack of specific bug localization approaches leads to a
longer development time, which sometimes causes delays in
the deadlines and postponement of the launch date. This results
in the video game being released with an excessive number
of bugs, such as the case of the blockbuster Cyberpunk 2077
[5].

There are significant differences between Classic Software
Engineering (CSE) and Game Software Engineering (GSE)
[6], [4]. Our work argues that the differences can become
opportunities for tackling the challenge of bug localization in
video games. Specifically, we propose to leverage game simu-
lations to locate bugs in the software models of video games.
In video games, it is common to include non-player characters
(NPCs). They accompany the player in the adventure, are the
enemies to beat, or simply populate the world recreated in the
video game. These NPCs have pre-programmed behaviors and
can be used to launch gameplay simulations.

II. BACKGROUND

The case study that we are using to evaluate our ideas is
performed using the bosses of the video game Kromaia 1.
Kromaia is a three-dimensional video game. Each of the levels
involves a player’s spaceship flying from a starting point to a
target destination reaching the goal before being destroyed.
If the player manages to reach the destination, the final boss
corresponding to that level appears and must be defeated in
order to complete the level.

1See the official Playstation trailer to learn more about Kromaia: https:
//youtu.be/EhsejJBp8Go

Intl. Summer School on Search- and Machine Learning-based Software Engineering

37

The bosses are specified with the Shooter Definition Model
Language (SDML). SDML is a DSL model for the video game
domain. This DSL follows the main ideas of MDE using mod-
els for Software Engineering. The models are created using
SDML and interpreted at runtime. SDML defines aspects such
us the anatomical structure, the amount and distribution of
vulnerable parts, weapons, and defenses in the structure/body
of the character, and the movement behaviors associated to
the whole body or its parts. This modeling language has
concepts such as hulls, links, weak points, weapons, and AI
components.

The simulations using the Kromaia case study simulate
a duel between a boss and a human player. During the
simulation, the simulated player faces the boss in order to
destroy the weak points that are available at that moment,
whereas the boss acts according to the anatomy, behavior, and
attack/defense balance that is included in its model, trying to
defeat the simulated player. In the simulation, both the boss
and the simulated player try to win the match and do not avoid
confrontation, try to prevent draw/tie games, and try to ensure
that there is a winner.

III. APPROACH

Our starting point is BLiMEA [7], [8], which is specifically
designed to locate bugs in software models. As many bug
localization approaches do [3], BLiMEA uses bug reports and
the defect localization principle [9]. BLiMEA iterates through
the models of a system and assesses model fragments as
possible sources of bug. To do so, BLiMEA uses a multi-
objective evolutionary algorithm with two fitness functions:
Information Retrieval (IR) and modification timespan. This
approach receives a bug description and a set of software
models as input. The output is a set where each model
fragment has been assigned two fitness values: the similarity
to the bug description, and the timespan to the most recent
model fragment modifications.

However, we want to leverage game simulations to locate
bugs in the software models of video games. The aim of the
approach is to find the most relevant simulation to locate the
target bug. Our preliminary approach takes as input a set of
software models in which we want to locate the bug. The
goal is to obtain a ranked list of simulation traces that are
ordered by their relevance in locating the bug. To do so, the
evolutionary algorithm performs a search that is guided by
a fitness function. The first attempt for the fitness function
is reward simulations that are farthest from what developers
expected. The idea is that if they have strayed from what the
developers expected, they might be relevant when locating a
bug.

IV. PRELIMINARY RESULTS

BLiMEA was successful in the context of CSE, for example,
by locating bugs in the firmware that controls induction hobs
from the brands of the BSH group [7]. However, in our
preliminary evaluations in the context GSE, the BLiMEA

results obtained lower values in the main measures (precision,
recall, and F-measure).

We have performed preliminary test of the ideas in which
the approach was able to reveal blocking bugs where the
boss was indestructible because one weak point overlapped
another weak point. Although we do not have enough results
to conduct a quantitative evaluation, our intuition indicates that
our approach can be highly useful for bug localization in GSE.

Finally, our intuition is that thinking about the lack of fun
heuristics can help design better guides to locate bugs in video
games. All in all, video game developers seem to be more
concerned about bugs that imperceptibly frustrate the player
than a null pointer exception.

V. CONCLUSION

For years, bug reporting and the defect localization principle
have proven to be useful for locating bugs in software. Bug
localization in Game Software Engineering has received little
attention despite the rise of video games and the problems that
their developers have in locating bugs.

Perhaps, bug reports and the defect localization principle are
not enough to locate bugs in video games. We explore a novel
route to locate bugs in video games by means of evolving
video game simulations that produce traces that are relevant to
locating bugs. To locate bugs, we want to leverage non-player
characters, which is one of the key features that are inherent to
the video game domain. Our work could open a novel research
direction for bug localization in video games that could also
potentially be used in Classic Software Engineering.

REFERENCES

[1] SlashData. Global developer population report 2019. https://sdata.me/
GlobalDevPop19, 2019. [Online; accessed 21-November-2021].

[2] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto
Bacchelli. How is video game development different from software
development in open source? In Andy Zaidman, Yasutaka Kamei, and
Emily Hill, editors, Proceedings of the 15th International Conference
on Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May
28-29, 2018, pages 392–402. ACM, 2018.

[3] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
A survey on software fault localization. IEEE Trans. Software Eng.,
42(8):707–740, 2016.

[4] Cristiano Politowski, Fábio Petrillo, and Yann-Gaël Guéhéneuc. A survey
of video game testing. In 2nd IEEE/ACM International Conference on
Automation of Software Test, AST@ICSE 2021, Madrid, Spain, May 20-
21, 2021, pages 90–99. IEEE, 2021.

[5] PC Gamer. How buggy is cyberpunk 2077, really? https://www.pcgamer.
com/how-buggy-is-cyberpunk-2077-really/, 2020. [Online; accessed 21-
November-2021].

[6] Apostolos Ampatzoglou and Ioannis Stamelos. Software engineering
research for computer games: A systematic review. Information and
Software Technology, 52(9):888–901, 2010.

[7] Lorena Arcega, Jaime Font, Øystein Haugen, and Carlos Cetina. An
approach for bug localization in models using two levels: model and
metamodel. Software and Systems Modeling, 18(6):3551–3576, 2019.

[8] Lorena Arcega, Jaime Font Arcega, Øystein Haugen, and Carlos Cetina.
Bug localization in model-based systems in the wild. ACM Trans. Softw.
Eng. Methodol., 31(1), oct 2021.

[9] Ahmed E. Hassan and Richard C. Holt. The top ten list: Dynamic fault
prediction. In Proceedings of the 21st IEEE International Conference
on Software Maintenance, ICSM ’05, page 263–272, USA, 2005. IEEE
Computer Society.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

38

Improving Search-based Test Case Generation by
means of Interactive Evolutionary Computation

Pedro Delgado-Pérez
Dpto. de Ingenierı́a Informática

University of Cádiz, Spain
pedro.delgado@uca.es

Aurora Ramı́rez
Dpto. Informática y Análisis Numérico

University of Córdoba, Spain
aramirez@uco.es

Kevin J. Valle-Gómez
Dpto. de Ingenierı́a Informática

University of Cádiz, Spain
kevin.valle@uca.es

Inmaculada Medina-Bulo
Dpto. de Ingenierı́a Informática

University of Cádiz, Spain
inmaculada.medina@uca.es

José Raúl Romero
Dpto. Informática y Análisis Numérico

University of Córdoba, Spain
jrromero@uco.es

Abstract—This talk summarizes our research efforts towards
getting more human-like and competitive results in search-based
software testing (SBST). Our ongoing work seeks to enhance
automated SBST tools like EvoSuite by incorporating the tester’s
knowledge and preferences through interactive evolutionary com-
putation. In our envisioned tester-centered interactive search
approach, the tester and the evolutionary algorithm cooperate
to reach more satisfactory test suites in terms of their detection
capability and readability. Here, we present our current ideas
and initial steps in this direction, and discuss current challenges.

I. CONTEXT AND MOTIVATION

Automated and efficient testing tools have been developed
in the last years to guide the generation of effective test suites,
thus reducing the costs of manual testing [1]. In this context,
search-based software testing (SBST) has been revealed as a
fruitful approach, clearly illustrated by the success of Evo-
Suite [2]. EvoSuite provides several genetic algorithms that
can be applied to evolve a population of whole test suites or
individual test cases for Java classes. Individuals represent test
cases encoded as sequences of method invocations, and are
iteratively modified by crossover and mutation operators. The
quality of the test cases is assessed by a configurable fitness
function that maximizes different coverage targets.

As EvoSuite has gained popularity and maturity, its ability
to detect real faults on industrial systems has been analyzed
too [3]. This study shows that SBST tools still have some
limitations to reveal complex faults due to the difficulty to
reach some parts of the code or to generate convenient com-
binations of input values to detect the fault. Furthermore, other
works have evaluated the comprehension of automatically
generated test suites and the willingness of testers to accept
them [4]. These studies reveal that testers perceive automatic
test suites as less helpful than those manually designed, which
clearly hamper their possible adoption in industrial contexts.
To overcome this, some authors have proposed fully automated
techniques to improve the appearance of the final test suite [5],
with the ultimate goal of gaining testers’ acceptance.

Our vision is that one alternative option to address both
issues —detection capability and readability— is to put the
tester in the loop. Interactive search-based software engi-
neering (iSBSE) [6] proposes showing intermediate results to
the engineer and incorporate their feedback into the search
process. Designing an effective interactive experience is a hard
task, requiring a careful design of the algorithm to prevent
fatigue and information overload. Interactive approaches for
SBST have only been explored in the context of test data
generation for embedded software [7]. Similarly, combining
the best of automated tools and the knowledge of testers about
the system under test (SUT) seems to be a better approach to
take one step further in the test case generation process. We
have high expectations on the possibilities that an interactive
approach could bring to such process, improving the tester’s
experience when using SBST tools and fostering a wider
acceptance from the software industry.

II. INTERACTIVE OPPORTUNITIES IN SBST

The design of an interactive search algorithm involves many
decisions that should be adapted to the particularities of the
problem domain and the purpose of the interaction. In a
recent work [8], we analyzed the general interactive options
compiled by the iSBSE review [6], mapping them to the test
case generation problem. Figure 1 summarizes the proposed
framework to design algorithm variants depending on whether
the interaction is focused on improving test case readability,
fault detection capability, or both.

Involving the tester in the evaluation could be a proper
way to assess the readability of the test cases, while his/her
knowledge about the SUT could be exploited to guide the
search towards the detection of hard faults. During an inter-
action, the tester could be asked to evaluate characteristics of
the candidate test cases, but also modify their statements and
parameters, or choose between similar test cases (e.g., those
that detect the same mutant). As for the interaction scheduling,
internal information about the evolution could be considered.
For instance, the level of achieved coverage can be useful

Intl. Summer School on Search- and Machine Learning-based Software Engineering

39

Interactive

algorithm
Tester’s

actions

Interaction

mechanism
Feedback

integration

Tester-based

evaluation

(readability)

Tester-guided

search

(fault detection)

Evaluate test

readability or

detection

capability

Modify test

sequence,

parameters,

assertions

Compare

similar test

cases (e.g.,

mutants)

When?

Min. coverage,

detected

mutants…

What?

Best tests,

common

target...

How?

Test case,

Test case +

mutated lines

For how long?

Current test,

transfer to other

tests/runs

Change?

Permanent

or editable

feedback

Fig. 1. Design alternatives for a search-based interactive algorithm to address the test case generation problem.

to avoid premature interactions, and the relation between test
cases and targets can be used to guide the selection of test
cases to be shown. The tester’s feedback —which might be
revisited or not— could be applied to the selected test cases,
or transferred to other tests in the same or a different run.

III. TOWARDS INTERACTIVE READABILITY ASSESSMENT

Our current efforts are focused on the challenge of improv-
ing the readability of the generated test suites based on the
tester’s preferences. With that purpose in mind, we are de-
signing a new version of EvoSuite that includes an interactive
module to pause the search at different points throughout the
execution and to incorporate readability assessments of several
test cases. At each of those moments, the system is intended
to prepare an interaction with the tester, in which:

• Different test cases from the population are selected, all
of them covering one of the targets pursued by the search.

• Both the test cases and the target are shown to the tester
for his/her revision.

• The system receives the readability assessment made by
the tester in the form of a readability score for each test.

The collected scores are intended to be used in the formation
of the final test suite, prioritizing the most readable test cases
from the tester’s perspective. This interactive version will be
configurable to set the desired number of interactions and how
many tests are selected for revision, among other parameters.

IV. CHALLENGES AND OPEN ISSUES

We are currently facing the following challenges:
a) Technical challenges: The interactive module should

monitor the state of the evolution to choose the right moments
to interact and decide which test cases are worthy revised by
the tester. This is clearly conditioned by the inner procedures
of EvoSuite, which includes different evolutionary algorithms
and performs additional steps to build the final test suite (e.g.,
removal of redundant tests). If the tester is asked to evaluate
readability, a practical ranking scale should be defined. Even
more, the incorporation of this information should not deviate
the search from its primary objective, i.e., the test suite
should not increase code readability at the expense of reducing
coverage. Also, the algorithm should be prepared to deal with
possible inconsistencies in the tester’s feedback.

b) Experimental challenges: Choosing the class under
test becomes an important decision: while simple classes might
be easily covered by EvoSuite, complex ones might result
difficult for the human to understand. Another aspect is the
difficulty in recruiting participants with the necessary expertise
on software testing to empirically validate the interactive ap-
proach in a realistic scenario. Also, participants with different
testing knowledge will have different perceptions of readability
because it is considered a highly subjective concept.

c) Practicability issues: Transferring our approach to an
industrial setting represents a long-term challenge. Whether
this interactive approach could be practical when applied on
industrial codebases and could actually serve to bridge the gap
between the state of research and practice is still an open issue.

ACKNOWLEDGMENT

Work supported by the European Commission (FEDER),
the Spanish Ministry of Science and Innovation (RTI2018-
093608-BC33, RED2018-102472-T, PID2020-115832GB-I00)
and the Andalusian Regional Government (DOC 00944).

REFERENCES

[1] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of search-
based test case generation,” IEEE Trans. Softw. Eng., vol. 36, no. 6, pp.
742–762, 2010.

[2] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 278–292, 2012.

[3] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in
a financial application,” in Proc. 39th Int. Conf. Software Engineering
(ICSE): Software Engineering in Practice Track, 2017, pp. 263–272.

[4] S. Shamshiri, J. M. Rojas, J. P. Galeotti, N. Walkinshaw, and G. Fraser,
“How do automatically generated unit tests influence software main-
tenance?” in Proc. 11th Int. Conf. Software Testing, Verification and
Validation (ICST), 2018, pp. 250–261.

[5] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella,
D. Gonzalez, and M. Mirakhorli, “DeepTC-Enhancer: Improving the
Readability of Automatically Generated Tests,” in Proc. 35th IEEE/ACM
Int. Conf. Automated Software Engineering (ASE), 2020, pp. 287–298.

[6] A. Ramı́rez, J. R. Romero, and C. L. Simons, “A systematic review
of interaction in search-based software engineering,” IEEE Trans. Softw.
Eng., vol. 45, no. 8, pp. 760–781, 2019.

[7] B. Marculescu, R. Feldt, R. Torkar, and S. M. Poulding, “Transferring
interactive search-based software testing to industry,” J. Syst. Softw., vol.
142, pp. 156–170, 2018.

[8] A. Ramı́rez, P. Delgado-Pérez, K. J. Valle-Gómez, I. Medina-Bulo,
and J. R. Romero, “Interactivity in the generation of test cases with
evolutionary computation,” in Proc. IEEE Congress on Evolutionary
Computation (CEC), 2021, pp. 2395–2402.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

40

Road to Human as the Fitness Function
Jaime Font∗, Lorena Arcega∗, Francisca Pérez∗ and Carlos Cetina∗

∗SVIT Research Group
Universidad San Jorge, Zaragoza, Spain

Email: jfont@usj.es, larcega@usj.es, mfperez@usj.es and ccetina@usj.es

Abstract—In Search-Based Software Engineering, more than
100 works have involved the human in the search process
to obtain better results. However, the case where the human
completely replaces the fitness function remains neglected. There
is a good reason for that; no matter how fast or efficient the
human is, humans cannot assess millions of candidate solutions
in a reasonable time. By contrast, computational intelligence
techniques (such as evolutionary computation or machine learn-
ing) are capable of dealing with large search spaces but are not
as good as humans in understanding the context when making
a decision. We propose to combine both, using the Human as
the Fitness Function of an evolutionary approach designed to
minimize the amount of work that the human has to perform.

We are using three ingredients to minimize the effort of
the human. Firstly, we focus on Search-Based Model-Driven
Engineering (SBMDE) because inspecting models should require
less human effort than inspecting code thanks to the higher
abstraction level of models compared to the code. Secondly, we
apply intelligent operators that do not rely only on randomness
to explore the search space but also embed relevant information
for the search being performed. Thirdly, we apply techniques
to handle unfeasible individuals (models that do not conform to
their metamodel) and thus reducing the search space.

I. INTRODUCTION

Search-Based Software Engineering (SBSE) proposes to
reformulate problems from the field of software engineering
as search problems that can be addressed by existing meta-
heuristic algorithms such as evolutionary algorithms. It has
attracted many research efforts from different fields, as only
three items are needed to apply SBSE: (1) an encoding to
represent candidate solutions to the problem as individuals
that can be manipulated; (2) a set of operators used to
generate new individuals; (3) a fitness function that can assess
how good is each candidate as a solution to the problem.
Then, candidate solutions (which are encoded following the
representation chosen) are evolved (by applying the operators)
and are evaluated (by the fitness function) in an iterative
process until optimal solutions to the problem are found.

SBSE has been applied to many different problems [1],
and we have successfully applied it to maintenance tasks
such as bug localization [2], traceability links recovery [3], or
feature location [4]. Feature Location is defined as the task of
identifying the set of software elements that realize a particular
feature. This can be applied to different software artifacts (e.g.:
source code or software models) and the elements identified
can vary in granularity (a line of code, a method, or a whole
class). In one of our previous works, we tackled the problem
of feature location from the software of CAF, an industrial
partner that has been producing railway solutions since 1917.

We estimated that the time needed by a single engineer to
manually locate all the features present in their software
products would be over 30 years [3].

Encodings and operators can be reused across domains or
applications and adapted with minimum changes to be applied
to different problems. The typical encoding used includes
binary strings, value encoding, or tree encoding. Similarly,
default operations for those encodings can be directly applied,
either selection operators, crossover operators, or mutation
operators. However, the fitness function is more bounded to
the domain and not so easily translated from one domain to
another, as it needs to take into account much information
about the domain.

We propose to replace the fitness function with a human,
taking advantage of the better understanding of the domain
and the context of humans compared to computers. However,
there is a good reason for not doing it, no matter how efficient
the human is, humans cannot evaluate thousands of candidate
solutions in reasonable time as they will suffer from fatigue.
By contrast, computers are never tired and will surpass humans
in tasks like the manipulation of individuals or the exploration
of large search spaces. The following sections describe the
steps that enabled us to use the Human as the Fitness Function
(HaFF).

II. RELATED WORK

Traditionally, SBSE that has been applied to reformulate
software engineering tasks into search problems relegated the
human to the background and put most of the burden on
the search strategy. Some works have attempted to address
this by enabling the interaction of the human in the search
process, mainly by providing scores to complement the fitness
function. As part of our work, we have analyzed existing
surveys about search-based software engineering applied to
model-driven engineering [5] (covering works from 1998 to
2016) and about interactive search-based software engineering
[6] (covering works from 1999 to 2017) and updated them (up
to August 2020).

Most of the works (54.55%) involve humans in the selection
of solutions. The next most common type of interaction is the
modification of the obtained solution (31.82%). Our work is
focused on the evaluation (fitness function), only 27.27% of
the works involve humans in the evaluation. None of the works
have been able to successfully replace the fitness function with
a human in an industrial context as our work does.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

41

III. APPROACH

To effectively apply HaFF we need to reduce the number
of fitness evaluations done by the search strategy. We have
explored three ideas to reduce the number of generations
needed to reach the optimal solution: (1) the use of software
models; (2) the use of intelligent operators; (3) the use of
strategies to handle unfeasible individuals.

Applying the concepts of model-driven engineering [7],
where models are the cornerstone of the process and source
code can be generated directly from the software model, the
search space can be reduced. The rise in the abstraction level
introduced by the models helps in reducing the magnitude of
the problem; however, the search space is still too big to be
manually traversed. Using a binary encoding to represent a
model that is used to generate the source code of an induction
hob yields a search space of more than 10150 individuals [8].

By using intelligent operators, we can reduce the number
of generations needed by the evolutionary algorithm to reach
the optimal solution; thus reducing the number of fitness
evaluations performed. In one of our previous works [9], we
proposed a set of intelligent operators that leverage the latent
semantics of software models instead of applying random
mutation and crossover operators. Specifically, the operators
proposed are based on query reformulation techniques that we
have successfully applied in the past [10]. In our evaluations,
the use of these operators significantly reduced the number
of generations needed to reach the optimal solution (from
347.685 to 384 on average for the best scenario).

When working with software models, the conformance
between models and metamodels must be guaranteed, en-
suring that the software model is built using the concepts
and following the constraints formalized by its metamodel.
However, when traditional genetic operators are applied to
individuals encoding software models, the conformance can
be easily broken. We have recently proposed nine strategies
to handle the nonconforming individuals when applying SBSE
to individuals that encode software models [8]. The nine
strategies are based on methods proposed in the literature:
penalty functions, which reduce the fitness value if constraints
are violated; strong encoding, which guarantees by construc-
tion that unfeasible individuals cannot be created; closed
operators, which always produce new individuals that fulfill
the constraints; repair operators, which can turn an unfeasible
individual into a feasible one, fixing the problematic parts.
Our evaluation shows that the application of these strategies
reduced the number of generations needed to reach the optimal
solution (from 6405 to 456 on average for the best-performing
strategy).

IV. RESULTS

In a recent work [11], we have applied intelligent operations
and individuals encoding software models to reduce the num-
ber of fitness evaluations to a level manageable by a human.
That is, we replaced the fitness function with a human in a real-
world case study of feature location in software models. In the
evaluation, 29 software engineers from the industrial partner

were involved in acting as the fitness function, assessing 400
individuals each of them.

The results showed that HaFF leads to significantly better
results than the best baseline. The results are excellent for all
the features obtaining 82.34% in precision, 96.01% in recall,
and 88.34% in F-measure. The work includes guidelines on
how to apply HaFF to other problems from SBSE.

V. CONCLUSION

The fitness function can be replaced by a human, providing
better values than the best fitness available in the literature for
the problem of feature location [11]. However, this is just the
first step, there is still room for improvement: (1) reducing the
number of fitness evaluations even more with proper handling
of unfeasible individuals should lead to better results (as the
human will be able to refine more the individual with the same
number of fitness evaluations); (2) there are other benefits from
the use of HaFF, the human is less affected to problems with
language (as vocabulary mismatch or tacit knowledge [12])
and we would like to empirically evaluate it; (3) there are more
opportunities of synergy emerging from the involvement of the
human as fitness, we want to explore the collaboration between
more than one human to be the fitness and the possibility of
hybrid fitness that only ask the human from time to time.

REFERENCES

[1] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 11:1–11:61, Dec. 2012.

[2] L. Arcega, J. Font, Ø. Haugen, and C. Cetina, “An approach for bug
localization in models using two levels: model and metamodel,” Softw.
Syst. Model., vol. 18, no. 6, pp. 3551–3576, 2019.

[3] F. Pérez, R. Lapeña, J. Font, and C. Cetina, “Fragment retrieval on
models for model maintenance: Applying a multi-objective perspective
to an industrial case study,” IST, vol. 103, pp. 188–201, 2018.

[4] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Achieving feature
location in families of models through the use of search-based software
engineering,” IEEE Transactions on Evolutionary Computation, vol. PP,
no. 99, pp. 1–1, 2017.

[5] I. Boussaı̈d, P. Siarry, and M. Ahmed-Nacer, “A survey on search-based
model-driven engineering,” Automated Software Engineering, vol. 24,
no. 2, pp. 233–294, Jun 2017.

[6] A. Ramı́rez, J. R. Romero, and C. L. Simons, “A systematic review of
interaction in search-based software engineering,” IEEE Transactions on
Software Engineering, vol. 45, no. 8, pp. 760–781, 2019.

[7] S. Kent, “Model driven engineering,” in Integrated Formal Methods.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 286–298.

[8] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Handling nonconforming
individuals in search-based model-driven engineering: nine generic
strategies for feature location in the modeling space of the meta-object
facility,” Softw. Syst. Model., vol. 20, no. 5, pp. 1653–1688, 2021.

[9] F. Pérez, T. Ziadi, and C. Cetina, “Utilizing automatic query reformu-
lations as genetic operations to improve feature location in software
models,” IEEE Transactions on Software Engineering, no. 01, pp. 1–1,
jun 2020.

[10] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Collaborative feature
location in models through automatic query expansion,” Autom. Softw.
Eng., vol. 26, no. 1, pp. 161–202, 2019.

[11] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Empowering the human
as the fitness function in search-based model-driven engineering,” IEEE
Transactions on Software Engineering, no. 01, pp. 1–1, oct 2021.

[12] C. Cetina, J. Font, L. Arcega, and F. Pérez, “Improving feature location
in long-living model-based product families designed with sustainability
goals,” J. Syst. Softw., vol. 134, pp. 261–278, 2017.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

42

GitHub Actions Adoption Among Projects,
What Are The Best Practices?

Ali Khatami
Software Engineering Research Group

Delft University of Technology
Delft, The Netherlands
s.khatami@tudelft.nl

Abstract—GitHub Actions (GHA) is a fast-growing automation
service for software workflows on GitHub, and is becoming
the dominant CI service in open source software development.
However, developers lack assistive tools, and suggested best
practices when configuring GHA’s workflows. To address this
challenge, this paper will focus on studying: the GHA adoption
across different programming languages, kind of tasks that are
mostly automated, and common configuration patterns. The
results will enable us to come up with a set of best practices
for GHA adoption.

Next step following this study would be building recommen-
dation tools to assist developing GHA workflows for software
projects on GitHub. The common patterns discovered in this
study can help to build such recommenders.

I am eager to discuss and brainstorm the new ideas and
challenges related to this work with the participants of the
SMILESENG Summer School.

I. INTRODUCTION

To ensure the quality of software systems, software engi-
neers use a range of quality assurance approaches, e.g., soft-
ware testing, modern code review, automated static analysis,
and continuous integration. We first studied these practices
to have an overview of the state-of-the-practice in quality
assurance in open-source software development.1 This study
led to insights into the prevalence of quality assurance ap-
proaches in Open Source Software (OSS) projects, in isolation,
and in conjunction. Moreover, we discovered challenges that
projects face for each of these practices, which then inspired
novel ideas for future research. One of the highlighted chal-
lenges is lack of best practices for adopting GitHub Actions2

(GHA). GHA is an automation service for software workflows
on GitHub, and is becoming the dominant CI service on
GitHub [1]. Despite the rapid growth, there is not enough
studies to investigate best practices of adopting GHA, and
evaluate different approaches of using it.

Projects have different strategies when configuring GHA
workflows. During this configuration, developers need to set
several components, which contain various options [2]. Thus,
it is difficult for a developer with less experience to configure
GHA workflows [2]. To address this challenge an idea is

1A. Khatami, and A. Zaidman, “State-Of-The-Practice in Quality Assurance
in Open Source Software Development”, Submitted to Journal of Systems and
Software, May 23rd, 2022.

2https://github.com/features/actions, last visited 3rd June 2022. GitHub
Actions was made public on 13th November 2019 on GitHub.

to create tools to assist developers when configuring the
workflows [3], [2]. Yet, these assistive tools can depend on
the Programming Language (PL) specific properties, that a
project use. As an example, it is possible to define testing
phase after build phase in a Maven ‘pom.xml’ configuration
file of a Java project, but doing the exact same thing it not
as similarly possible for a Python project. In other words, the
development ecosystem differs from one PL to another, which
also makes configuration of workflows different.

Accordingly, studying the state of the practice in GHA
adoption, with a focus on the PL specific properties is of
importance. Besides, finding common patterns used in work-
flows configuration is another idea of addressing the challenge.
Particularly, best practices can be the same accepted common
patterns of configuration that occur repeatedly.

II. RELATED WORKS

Kinsman et al. have found developers have a positive recep-
tion of GHA by manually analyzing GHA related discussions
on GitHub. They also have reported a 0.7% adoption of
GHA among around 400K repositories mainly for continuous
integration, utilities, and deployment purposes. Moreover, they
have investigated the impact of GHA adoption on projects and
found that the number of commits of merged pull requests
decreases, and the number of monthly rejected pull requests
increases after the adoption of GHA [4].

Also, Golzadeh et al. have conducted a longitudinal study
focused on the evolution of CI on GitHub projects. By study-
ing CI co-usage and migration of around 90K GitHub reposi-
tories, and considering 7 different CI platform including GHA,
they have found Travis-CI and GHA are the predominant
CIs. Moreover, they mentioned GHA is becoming the most
dominant CI platform and is used in more repositories than
Travis-CI. Particularly, they have observed a fall in Travis-CI
usage due to migration to GHA [1].

In another work, Chen et al. have focused on the state of
the practice in using GHA, and reported a 22.5% adoption
of GHA among their set of 27K popular repositories. Also,
they have studied the correlation between GHA usage and
properties of a project to see its impacts. Moreover, they
have looked at the common specifications that projects use
when configuring their GHA workflows. After all, they have
highlighted the challenge of configuring workflows, difficulty

Intl. Summer School on Search- and Machine Learning-based Software Engineering

43

of building commonly used action sequences, need of assistive
tools to configure GHA, and the latency of communication
among jobs through the artifacts [2].

Valenzuela-Toledo et al. have studied the modifications
on workflows’ configuration. By manual inspection of 222
commits on GHA workflows of 10 software projects, they have
highlighted the need of tools for workflow creation/edition,
identification of syntax errors, and recommendation of specific
common task [3].

III. PROPOSED RESEARCH QUESTIONS

To reach the goal of this research, I will focus on answering
the following research questions:

RQ1 How GHA is adopted across different programming
languages?
There has been studies that looked at the porpotion
of GHA usage among different projects with different
PLs [4], [2]. But none looked deeper to see if there is
any PL specific characteristic in GHA adoption. Con-
sequently, to answer this research question I want to
see how projects make use of GHA by looking at the
type of actions they use, number/kinds of jobs/workflows,
number of steps in each job, and the relation between
jobs in a workflow. More specifically, I would like to see
how GHA adoption differs in Java projects that already
benefit from Maven or Gradle, and other projects that do
not have such build automation tools.

RQ2 What kind of tasks are mostly automated by GHA?
Other related works have only looked at the actions
and did a categorization of actions used in projects’
workflows [4], [2]. However, I aim to see what tasks are
automated, how they are automated, and whether they are
using the same actions for the same purposes? If they are
not, what are the reasons?

RQ3 What are the common patterns in GHA workflows
configuration?
Common patterns of workflow configurations are of high
importance, since they can be recommended to other
projects with similar properties. I want to look deeper
into these configurations to find the common patterns.
As an example, obviously “actions/checkout” is the most
commonly used action among projects [4], [2] because
they all need to “checkout” the changes before running
any kind of actions on the repository. Hence, I want to
be more focused at task level configurations that contain
many actions, and also the relation among those actions.

IV. BUILDING THE DATASET

As an empirical study, the first step is to build the initial
dataset of selected projects. Similar to Chen et al. [2], I will
start with a set of popular projects on GitHub (using GitHub
Search (GHS) dataset [5]) and then filter the ones using GHA
workflows by checking if they have any files with YAML
format in the “./github/workflows” directory.

Based on the proposed RQ1, the next step would be
choosing the top PLs using GHA. Again according to Chen et

al. [2]’s study, JavaScript, Python, Go, TypeScript, and Java
are among the top PLs using with more than 500 repositories
for each of them.

Other steps include: cloning projects, extracting their YAML
configuration files, and parsing them to obtain detailed well
formatted configuration data. This data will be used in the
analysis part to answer the research questions.

V. PRELIMINARY RESULTS

This work is still in the stage of brainstorming and exploring
new ideas, so there are no preliminary results available yet.
But, if obtained before the time of the live talk, will be
presented at the SMILESENG Summer School.

VI. CONCLUSION

In this short paper, we saw the importance of studying
GitHub Actions (GHA) workflows to find the so-called best
practices in configuring software workflows on GitHub. Also,
we saw there is a need of assistive tools for software devel-
opers designing these workflows.

As a first step towards building the assistive tools, and
proposing the best practices, I mentioned three research ques-
tions, and briefly explained what are the benefits of answering
them. Moreover, I mentioned a few steps of the data collection
step of the study.

I am excited to see how participants of the SMILESENG
Summer School find this research idea, receive feedbacks, and
discuss each of the steps of conducting it.

REFERENCES

[1] M. Golzadeh, A. Decan, and T. Mens, “On the rise and fall of CI services
in GitHub,” in 29th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2022.

[2] T. Chen, Y. Zhang, S. Chen, T. Wang, and Y. Wu, “Let’s supercharge
the workflows: An empirical study of github actions,” in 21st IEEE
International Conference on Software Quality, Reliability and Security,
QRS 2021 - Companion, Hainan, China, December 6-10, 2021.
IEEE, 2021, pp. 1–10. [Online]. Available: https://doi.org/10.1109/QRS-
C55045.2021.00163

[3] P. Valenzuela-Toledo and A. Bergel, “Evolution of github action work-
flows,” in 29th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2022.

[4] T. Kinsman, M. S. Wessel, M. A. Gerosa, and C. Treude,
“How do software developers use github actions to automate
their workflows?” in 18th IEEE/ACM International Conference on
Mining Software Repositories, MSR 2021, Madrid, Spain, May
17-19, 2021. IEEE, 2021, pp. 420–431. [Online]. Available:
https://doi.org/10.1109/MSR52588.2021.00054

[5] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in GitHub
for MSR studies,” in International Conference on Mining Software
Repositories (MSR). IEEE, 2021, pp. 560–564.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

44

Traceability Links Recovery in BPMN Models
through Evolutionary Learning to Rank

Raúl Lapeña, Ana Marcén, Jaime Font, and Carlos Cetina
SVIT Research Group
Universidad San Jorge

Villanueva de Gállego, Spain
Email: [rlapena,acmarcen,jfont,ccetina]@usj.es

Abstract—Traceability Links Recovery (TLR), defined as the
software engineering task that deals with the automated iden-
tification of dependencies between software artifacts, is a key
to success in the scene of industrial software, and has been
a subject of fundamental and applied investigation for many
years within the software engineering community. Most TLR
techniques perform traceability based on the linguistic clues
of the software artifacts under study, causing BPMN models
to pose an additional challenge for TLR, since they tend
to contain less textual information than other artifacts. Over
the past few years, we have studied TLR between natural
language requirements and Model Driven Development (MDD)
models through an Evolutionary Learning to Rank approach
(ELtoR), retrieving traceability links through the combination
of evolutionary computation and machine learning techniques,
outperforming five other TLR approaches. One of the reasons
behind the improvements is that ELtoR is not as dependent on the
linguistic clues of the artifacts as the other TLR approaches. Our
hypothesis is that ELtoR can be used to improve the state of the
art in TLR between requirements and BPMN models. Through
this communication, we report new ideas on how to adapt ELtoR
and the necessary encodings to work over BPMN models, plus our
expectations regarding the outcomes of evaluating the approach
in an industrial scenario.

I. INTRODUCTION

Traceability Links Recovery (TLR) is an important support
activity for development, management, and maintenance of
software, and is considered as a good practice by numerous
major software standards [1]. Affordable TLR can be criti-
cal to the success of a project [2], and leads to increased
maintainability and reliability of software systems [3], also
decreasing the expected defect rate in developed software [4].
However, establishing and maintaining traceability links has
proven to be a time consuming, error prone, and person-
power intensive task [1]. Therefore, automated TLR has been
a subject of investigation for many years within the software
engineering community. In recent years, it has been attracting
more attention, becoming a subject of both fundamental and
applied research [5].

Software engineers from our industrial partner, an interna-
tional manufacturer in the railway domain, express system
requirements in natural language, and use them to design
BPMN models [6]. The BPMN models are used to describe the
interactions that occur between the humans and the trains, and
to design and derive other software artifacts. State-of-the-art
automated TLR techniques rely greatly on the language and

the syntactical, lexical, and semantical particularities of the
software artifacts under study. For instance, Latent Semantic
Indexing (LSI), which is the most popular TLR technique and
the one that has yielded the best TLR results so far [7], is
based on exploiting term similarities among the requirements
and the software artifacts. BPMN models tend to present
less terms and an overall lack of textual information in
comparison to other artifacts. Since TLR techniques rely on the
textual components of the artifacts under study, TLR becomes
an ever harder task when performing TLR directly among
requirements and BPMN models.

TLR-ELtoR is a Traceability Links Recovery (TLR) ap-
proach that is based on an Evolutionary Algorithm and a
Learning to Rank technique (ELtoR). The results obtained
through this approach indicate that TLR-ELtoR may be a
better alternative than LSI or other approaches when the
software artifacts are incomplete or do not have much textual
content [8]. This work is our first step in adapting TLR-ELtoR
for its application on BPMN models taking into consideration
the particularities of this kind of model [9]. We also report
our expectations regarding the outcomes of evaluating the
approach in an industrial real-world scenario.

II. RELATED WORK

Most of the existing works focus on Traceability Link
Recovery between requirements and source code. CER-
BERUS [10] provides a hybrid technique that combines in-
formation retrieval, execution tracing, and prune dependency
analysis allowing the tracing of requirements to source code.
Eaddy et al. [11] present a systematic methodology for identi-
fying which code is related to which requirement, and a suite
of metrics for quantifying the amount of crosscutting code.
Some other works target the TLR tasks on models. De Lucia
et al. [12] present a Traceability Link Recovery method and
tool based on LSI in the context of an artifact management
system, which includes models. In contrast, this work does not
focus on source code or MDD models. Rather, we propose new
ideas on how to adapt the TLR-ELtoR approach to work over
BPMN models taking their particularities into account.

III. APPROACH

The ELtoR approach is based on an Evolutionary Algorithm
that relies on genetic operations and a fitness function to

Intl. Summer School on Search- and Machine Learning-based Software Engineering

45

provide the model fragment from a given model that realizes
a specific requirement. The approach receives as input the
model that implements a specific requirement. An evolutionary
algorithm then iterates over a population of model fragments,
evolving them using genetic operations. Finally, the score
of each model fragment and its position in the ranking are
calculated through a fitness function that uses LtoR as its
objective. As output, the approach provides a model fragment
ranking where each model fragment is ranked taking into
account how well the model fragment implements the input
requirement. ELtoR has three steps:

1) Initialization: generation of a population of model frag-
ments from the model, which serves as input for the
evolutionary algorithm.

2) Genetic operations: genetic operations generate candi-
date model fragments for the target requirement.

3) Fitness function: the new model fragment population is
evaluated through the fitness function.

The last two steps of the approach are repeated until the
solution converges to a certain stop condition. When the
stop condition is met, the evolutionary algorithm provides a
model fragment list, ranked according to the objectives for the
requirement.

IV. PRELIMINARY RESULTS

The fitness function of the TLR-ELtoR approach is based
on LtoR algorithms, which are machine learning algorithms
that automatically address ranking tasks. Specifically, the LtoR
algorithms make it possible to build a classifier that contains
a set of rules to rank objects. In our approach, the classifier
is used to determine how well each model fragment realizes
a specific requirement. If the classifier is not properly trained,
the approach cannot determine which model fragment is
the best solution for a specific requirement. Therefore, the
classifier is a critical element in our approach. However, the
training of the classifier is not a simple task.

First, a classifier is trained using a knowledge base. This
knowledge base contains a set of examples used for learning,
or in other words, to train the classifier. In our case, it
must contain a set of links between requirements and model
fragments. The specific particularities of the model fragments
can have an impact on the training, so using a representative
knowledge base for the training is very important. In BPMN
models, there are many model elements with little or no text,
but several language patterns that can be used to link the
requirements with the models [9]. Therefore, the examples
(model fragments) must contain different amounts of text and
also sample all the possible identified patterns.

Second, the examples in the knowledge base must be
encoded as feature vectors to apply LtoR algorithms. In [13],
we described three different encodings for MDD models, but
these encodings are based on texts, that is, on counting the
occurrences of a specific term. We can adapt the encodings
to count the occurrences of an element type or pattern for the
BPMN models.

Third, machine learning algorithms have different capabili-
ties. For example, in [8], we used Rankboost because this LtoR
algorithm can benefit from a small knowledge base together
with a small number of features in the encoding to reduce the
overfitting problem [14]. However, due to the lack of text in
BPMN models, we expect to need a larger knowledge base and
other machine learning techniques such as neural networks.

V. CONCLUSIONS

Traceability Links Recovery (TLR) is a key to success in the
scene of industrial software. BPMN models pose an additional
challenge for TLR due to their lack of text. Our hypothesis
is that our Evolutionary Learning to Rank approach (ELtoR),
which is not as dependent on the linguistic clues of the artifacts
as the other TLR approaches, can be used to improve the state
of the art in TLR between requirements and BPMN models.
So far, we have managed to transport the encoding to BPMN
models. Our current challenge lies on adapting the training
process and knowledge base.

REFERENCES

[1] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
Equivalence of Information Retrieval Methods for Automated Trace-
ability Link Recovery,” in 2010 IEEE 18th International Conference on
Program Comprehension. IEEE, 2010, pp. 68–71.

[2] R. Watkins and M. Neal, “Why and How of Requirements Tracing,”
IEEE Software, vol. 11, no. 4, pp. 104–106, 1994.

[3] A. Ghazarian, “A Research Agenda for Software Reliability,” IEEE
Reliability Society 2009 Annual Technology Report, 2010.

[4] P. Rempel and P. Mäder, “Preventing Defects: the Impact of Require-
ments Traceability Completeness on Software Quality,” IEEE Transac-
tions on Software Engineering, vol. 43, no. 8, pp. 777–797, 2017.

[5] R. M. Parizi, S. P. Lee, and M. Dabbagh, “Achievements and Challenges
in State-of-the-Art Software Traceability between Test and Code Arti-
facts,” IEEE Transactions on Reliability, vol. 63, no. 4, pp. 913–926,
2014.

[6] M. Chinosi and A. Trombetta, “BPMN: An Introduction to the Stan-
dard,” Computer Standards & Interfaces, vol. 34, no. 1, pp. 124–134,
2012.

[7] J. Rubin and M. Chechik, “A Survey of Feature Location Techniques,”
in Domain Engineering. Springer, 2013, pp. 29–58.

[8] A. C. Marcén, R. Lapeña, Ó. Pastor, and C. Cetina, “Traceability
link recovery between requirements and models using an evolutionary
algorithm guided by a learning to rank algorithm: Train control and
management case,” Journal of Systems and Software, vol. 163, p.
110519, 2020.

[9] R. Lapeña, F. Pérez, C. Cetina, and O. Pastor, “Leveraging BPMN
particularities to improve traceability links recovery among requirements
and BPMN models,” Requirements Engineering, pp. 1–26, 2021.

[10] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “Cerberus:
Tracing Requirements to Source Code Using Information Retrieval,
Dynamic Analysis, and Program Analysis,” in ICPC 2008 conference.
IEEE, 2008, pp. 53–62.

[11] M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, Assigning, and
Quantifying Crosscutting Concerns,” in Proceedings of the First In-
ternational Workshop on Assessment of Contemporary Modularization
Techniques, 2007, p. 2.

[12] A. de Lucia et al., “Enhancing an Artefact Management System with
Traceability Recovery Features,” in Proceedings of the 20th IEEE
International Conference on Software Maintenance. IEEE, 2004, pp.
306–315.

[13] A. C. Marcén, F. Perez, O. Pastor, and C. Cetina, “Enhancing software
model encoding for feature location approaches based on machine
learning techniques,” Software and Systems Modeling, vol. 21, no. 1,
pp. 399–433, 2022.

[14] Z.-H. Zhou and J. Feng, “Deep Forest: Towards an Alternative to Deep
Neural Networks,” arXiv preprint arXiv:1702.08835, 2017.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

46

Active Learning-driven Testing of Web APIs
A. Giuliano Mirabella

SCORE Lab, I3US Institute
Universidad de Sevilla

Seville, Spain
amirabella@us.es

Abstract—Automated test case generation for web APIs is a
thriving research topic. Most approaches in this domain follow
a black-box approach, where test cases are randomly derived
from the API specification. These techniques show promising
results, but they neglect constraints among input parameters (so-
called inter-parameter dependencies), as these cannot be formally
described in current API specification languages. As a result,
when testing real-world services, most randomly generated API
requests (i.e., test cases) are invalid since they violate some of
the inter-parameter dependencies of the service, making human
intervention indispensable. In this paper, an active learning-based
method is proposed to efficiently train a classifier to predict
the validity of requests before invoking the API, so that invalid
requests can be discarded in advance. This strategy minimises
the data required to learn during testing, making the approach
affordable in practice. Our technique learns as it generates test
cases, so that the percentage of valid calls progressively increases
up to 90% in commercial APIs such as GitHub and Stripe.
More importantly, the number of detected failures is three times
grater than a fuzzing baseline. These results show the potential
of artificial intelligence to improve current test case generation
techniques achieving an unprecedented level of automation.

I. INTRODUCTION

RESTful Web APIs (also called REST APIs) [1] are the
de facto standard for Web integration. These APIs expose
a uniform interface through which data and services can be
accessed via HTTP interactions. A common phenomenon in
REST APIs is that they exhibit inter-parameter dependencies
(or simply "dependencies"), i.e, constraints between two or
more input parameters that must be met to form valid service
calls. For example, in the Google Maps API, when searching
for locations, if the location parameter is used, the radius
parameter must also be used, otherwise an error is returned
(status code 400, “Bad Request”). Likewise, when querying
the GitHub API [2] to retrieve the authenticated user’s repos-
itories, the optional parameters type and visibility must
not be used together in the same API request, otherwise an
error will be returned. A recent study [3] revealed that these
dependencies are very common: they appear in 4 out of 5
APIs, across all application domains and types of operations.
Unfortunately, current API specification languages, such as
OpenAPI Specification (OAS) [4], do not support the formal
description of such dependencies.

In a previous study [5] we showed that, using machine
learning techniques, a classification algorithm can be trained
to predict the validity of an API call, i.e. whether it satisfies
all API dependencies or not, thus avoiding unnecessary API

requests. This approach is efficient (it is fully automatic)
and effective (it generates a high number of valid requests),
but requires a sufficiently varied and balanced training set
(dataset). Such a dataset is costly to achieve with current
testing techniques, as it involves the generation of many
requests and the consequent expenditure of API resources
(with the number of allowed API calls often being a limiting
factor). The aim of this work is to propose a technique for
the efficient collection of a dataset of requests and responses,
maximizing the learning of the request classifier, and therefore
incurring the minimum possible number of API calls.

II. ACTIVE LEARNING

A supervised learning system must be trained with hundreds
or thousands of labeled observations. There are cases where
these observations have a minimal cost (e.g., the rating that
users give to movies on a website), but in other cases obtaining
the labels may involve a non-negligible cost in terms of time,
money or resources. This is the case here, where tagging train-
ing calls as valid or invalid requires invoking APIs hundreds
or thousands of times.

Active learning (AL) is a branch of machine learning whose
key idea is that the learning algorithm can actively choose
the observations it learns from [6]. Higher accuracy can be
achieved with fewer training labels if the algorithm is allowed
to interactively query a source of information, called an oracle,
to label new observations with the correct outputs [6]. For
example, transcribing an audio to text can take up to ten times
longer than the original audio, and requires trained linguists.
In the AL paradigm, it is the algorithm that actively asks the
linguist to transcribe certain audios, and then train on them [7].

III. APPROACH

The goal of this work is to maximise the percentage of valid
calls sent to the API fully automatically. For this purpose,
we propose a technique based on AL that allows to collect a
training set in an optimal way. This technique consists of two
phases: start and learning (Figure 1).

A. Start

The process starts with the generation of n random requests,
which are executed by invoking the API and from which the
responses are collected. Those requests that received a 2XX
status code are labeled as valid, and those that received a 4XX
are labeled as invalid (this happens only when a dependency

Intl. Summer School on Search- and Machine Learning-based Software Engineering

47

Learning

Start

Predictor
training Yes

No

predictor
accurate?

Generation of
100n requests

Selection of the
best ones

Execution of
requests

Generation of
n requests

Execution of
requests

Predictor
training

Fig. 1. Approach diagram.

is violated: we rule out the possibility that errors are due to
individual values using predefined data dictionaries). Finally,
the predictor is trained on these observations.

B. Learning

As long as the accuracy of the predictor is less than a con-
figurable threshold, active learning is performed by iterations.
In each iteration, 100n random requests are generated. From
these, the n requests with the highest uncertainty are chosen,
where uncertainty is greater the closer the probabilities of the
request being valid or invalid are. For example, of the requests
shown in the Table, the one with the highest uncertainty is
number 3, since the probabilities of being valid (Pv) and
invalid (Pi) are very similar (0.49 and 0.51, respectively).
Finally, the API is invoked with the chosen requests, the
requests are labeled and the predictor is retrained, obtaining
another accuracy value.

TABLE I
EXAMPLE OF THREE UNLABELED REQUESTS.

ID type visibility affiliation sort direction Pv Pi

1 - ‘all’ ‘collaborator’ - ‘asc’ 0.9 0.1
2 ‘private’ - ‘owner’ ‘created’ - 0.3 0.7
3 ‘public’ - ‘collaborator’ - - 0.49 0.51

IV. EVALUATION

We evaluated the proposed technique on two commercial
API operations: reading repositories on GitHub and creating
a product on Stripe. For each operation, we generated 2000
requests and tried to maximise the number of valid ones (those
getting a status code 2XX). The table shows the percentage of
valid requests obtained with our technique (AL) versus those
obtained with random techniques (Random). The percentage
of valid requests increases a lot with our proposal, reaching a
∼ 98%. Thanks to this, we are able to detect up to three times
more errors (failures) of non-conformity with the specification.
The proposal has been implemented in Python with pandas
and scikit-learn, and the classification technique used is
the Random Forest [8].

TABLE II
EXPERIMENTAL RESULTS.

API
Valid requests (%) Failures

Random AL Random AL

GitHub 62.10 98.65 313 1159
Stripe 55.75 99.30 104 284

Media 58.93 98.98 209 722

V. CONCLUSIONS

In this article we present a new technique for the automatic
generation of more efficient test cases in REST APIs. Prelimi-
nary results show that the technique, based on active learning,
achieves up to a ∼ 98% of valid requests, compared to the
∼ 59% achieved by random techniques, in commercial APIs
from GitHub and Stripe, tripling the number of errors detected
and demonstrating the potential of artificial intelligence for the
automatic generation of test cases in REST APIs.

REFERENCES

[1] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, 2000.

[2] “GitHub API,” accessed January 2020. [Online]. Available: https:
//developer.github.com/v3/

[3] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “A Catalogue of
Inter-Parameter Dependencies in RESTful Web APIs,” in International
Conference on Service-Oriented Computing, 2019, pp. 399–414.

[4] “OpenAPI Specification,” accessed April 2020. [Online]. Available:
https://www.openapis.org

[5] A. G. Mirabella, A. Martin-Lopez, S. Segura, L. Valencia-Cabrera, and
A. Ruiz-Cortés, “Deep Learning-Based Prediction of Test Input Validity
for RESTful APIs,” in International Workshop on Testing for Deep
Learning and Deep Learning for Testing, 2021.

[6] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009.

[7] X. Zhu, J. Lafferty, and R. Rosenfeld, “Semi-supervised learning with
graphs,” Ph.D. dissertation, USA, 2005, aAI3179046.

[8] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. IEEE, 1995,
pp. 278–282.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

48

Automatizing Software
Cognitive Complexity Reduction:

What is Next?
Rubén Saborido, Javier Ferrer, Francisco Chicano

ITIS Software, University of Málaga, Spain
Email: rsain@uma.es, jferrer@uma.es, chicano@uma.es

Abstract—As software increases in complexity, developers
spend more time fixing bugs or making code work rather than
designing or writing new code. Thus, improving software under-
standability and maintainability would translate into an economic
relief over the total cost of a project. However, reducing the
complexity of a piece of code is not straightforward. Recently, we
modeled software cognitive complexity reduction as an optimiza-
tion problem and we proposed an approach to assist developers
on this task. This approach enumerates sequences of Extract
Method refactoring operations until a stopping criterion is met.
As result, it returns the minimal sequence of Extract Method
refactoring operations found that is able to reduce the cognitive
complexity of a method to the given threshold. We evaluated
our approach over 10 open-source software projects and was
able to fix 78% of the 1,050 existing cognitive complexity issues
reported by SonarQube. However, we uncover some limitations
and interesting open questions that need further discussion and
future work.

I. INTRODUCTION

In 2017, a novel cognitive complexity metric has been
proposed and integrated in the well-known static code tools
SonarCloud1 and SonarQube2, an open-source service and
platform, respectively, for continuous inspection of code qual-
ity. This cognitive complexity metric, which we refer to
as SonarSource Cognitive Complexity (SSCC), has been
defined as a measure of how hard the control flow of a method
is to understand and maintain [1]. It breaks from the practice of
using mathematical models to assess software maintainability.
The SSCC is given by a positive number which is increased
every time a control flow sentence appear. Their nested levels
also contribute to the SSCC of a method. Although SonarQube
suggests to keep methods’ cognitive complexity no greater
than 15, software developers lack support to reduce the SSCC
of their code to this threshold. Recently, we modelled the
reduction of the SSCC to a given threshold as an optimization
problem where the search space contains all feasible sequences
of extract method refactoring opportunities [2]. Here, we
summarize this research line and conclude with open questions
for future work.

The remainder of this paper is organized as follows. Sec. II
introduces the challenge of reducing SSCC of a method.
Sec. III summarizes a recently proposed approach to reduce

1https://www.sonarcloud.org/
2https://www.sonarqube.org/

methods SSCC. Sec. IV shows the results of the validation
of this approach over 10 open-source Java projects. Sec. V
concludes with open research gaps and future work.

II. BACKGROUND

The SSCC at method level can be reduced to a threshold
applying Extract Method refactoring operations: extracting
as a new method in the same class sequences of sentences
(i.e., lines of code). However, this task is not straightforward
because (i) more than one Extract Method refactoring could be
needed to reduce the SSCC of a method, (ii) there are Extract
Method refactorings which are not applicable in practice, and
(iii) Extract Method refactoring opportunities are bounded by
r =

(
n
2

)
= n·(n−1)

2 , where n is the number of sentences of
the method. This is the combination of n sentences taken two
at a time without repetition. These two sentences determine
the beginning and ending of a code extraction. Thus, the
main problem developers face is to find sequences of code
extractions that reduce the SSCC of the method. Nevertheless,
one would need to evaluate all possible sequences of Extract
Method operations, totaling up to 2r alternatives.

III. APPROACH

We recently proposed a SSCC reducer approach, consisting
in a solver method that takes as input the path to the software
project to process and the cognitive complexity threshold (τ).
Then, for each method with SSCC greater than τ , it searches
for sequences of applicable Extract Method refactoring oper-
ations. In order to perform this task, our approach generates
the corresponding Abstract Syntax Tree (AST) of the method.
Second, it parses the AST and annotates different properties3

in each node. Third, it processes the annotated AST to obtain
Extract Method refactoring opportunities. Once the approach
identifies Extract Method refactoring opportunities, it checks
if the extractions are applicable. This is done with the help
of refactoring tools which are able to check pre-conditions,
post-conditions, and apply the corresponding operation over
the source code.

We have developed a Java SSCC reducer tool as an Eclipse
application. This provides the necessary means for generating
an Eclipse product that can be run from the operating system

3These are used to compute the SSCC of extracted methods.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

49

command-line as a standalone executable, without the need for
opening Eclipse for running. This is particularly useful if, for
instance, one needs to integrate it in their current development
workflow (e.g., using continuous integration). The tool uses
the Extract Method refactoring operation provided by the Java
Development Toolkit (JDT) of Eclipse to test the feasibility of
code extractions programmatically. Finally, the tool chooses
the best sequence of method extractions found during the
search: the one that reduces the SSCC to (or below) the
threshold and minimizes the number of method extractions.

IV. PRELIMINARY RESULTS

We conducted a study to evaluate the proposed approach
when reducing the SSCC of methods in 10 open source
projects from GitHub: two popular frameworks for multi-
objective optimization, five platform components to accelerate
the development of smart solutions, and three popular open-
source projects with more than 10,000 stars and forked more
than 900 times. In total, these projects have 1,050 cognitive
complexity issues. The proposed approach was able to fix,
on average, 78% of the cognitive complexity issues on these
projects, taking almost 20 hours to process all methods on the
10 software projects under study. Most studied open-source
projects required more than one code extraction to reduce the
SSCC of their methods to 15. However, five projects required
five or more code extractions to reduce the SSCC of some
methods. In general, code extractions reduced, on average,
SSCC by 12 units. Nevertheless, some code extractions re-
duced methods SSCC up to 72 units.

V. CONCLUSION

We formulated the reduction of software cognitive
complexity provided by SonarCloud and SonarQube, to
a given threshold, as an optimization problem. We then
proposed an approach to reduce the cognitive complexity
of methods in software projects to the chosen threshold
though the application of sequences of Extract Method
refactoring operations. We also conducted some experiments
in 10 open-source software projects, analyzing more than
1,000 methods with a cognitive complexity greater than the
default threshold suggested by SonarQube (15). The proposed
approach was able to reduce the cognitive complexity to or
below the threshold in 78% of those methods.

Despite the obtained results, there are several open questions
to further discuss:

• It could exist multiple optimal Extract Method refactoring
operations when reducing the cognitive complexity of
a method, each of them impacting the code differently:
number of resulting and/or extracted lines of code
(LOC), number of arguments in the signature of
extracted methods, SSCC reduction, SSCC of new
extracted methods, etc.). Which one should we apply?
This opens the door to multiple criteria decision-making.

• An aspect that is out of the scope of this article is
the choice of the name for the new extracted methods.
Given that the name of new methods can influence the
understanding of the resulting source code, how can
we name new extracted methods? Creating a dictionary
with keywords in the original method and using natural
language processing techniques with Transformers could
be a good starting point to handle this fact.

• Having too many return, break, and continue
statements in a method decreases the method’s essential
understandability. This happens because the flow of
execution is broken each time one of these statements
is encountered. This fact could prevent the extraction of
the code, making an instance of the cognitive complexity
reduction problem unsolvable. Can we pre-process a
method to refactor return, break, and continue
statements in order to favor the cognitive complexity
reduction task?

• Enumeration algorithms used so far in the proposed
approach could fail to scale with the code size because
the number of refactoring plans can grow exponentially
with the number of lines of code. We believe that model-
ing SSCC reduction as an Integer Linear Programming
optimization problem makes sense. This would make
it feasible to apply efficient solvers, like CPLEX, to
get optimal solutions very quickly. Nevertheless, there
is still another open question: is the software cognitive
complexity reduction of a method an NP-hard problem?

ACKNOWLEDGMENT

This resarch has been supported by Universidad
de Málaga (grants B1-2020 01 and B4-2019-05) and
project PID2020-116727RB-I00 funded by MCIN/AEI
/10.13039/501100011033. Rubén Saborido and Javier Ferrer
are supported by postdoc grants POSTDOC 21 00567 and
DOC/00488, respectively, funded by the Andalusian Ministry
of Economic Transformation, Industry, Knowledge and
Universities.

REFERENCES

[1] G. A. Campbell, “Cognitive Complexity: An Overview and Evaluation,”
in Proceedings of the 2018 International Conference on Technical
Debt, ser. TechDebt ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 57–58. [Online]. Available:
https://doi.org/10.1145/3194164.3194186

[2] R. Saborido, J. Ferrer, F. Chicano, and E. Alba, “Automatizing software
cognitive complexity reduction,” IEEE Access, vol. 10, pp. 11 642–11 656,
2022.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

50

Tool showcases

51

Online Testing of RESTful APIs with RESTest
Alberto Martin-Lopez

SCORE Lab, I3US Institute
Universidad de Sevilla

Seville, Spain
alberto.martin@us.es

Abstract—Online testing of web APIs—testing APIs in
production—is gaining traction in industry. Platforms such as
RapidAPI and Sauce Labs provide online testing and monitoring
services of web APIs 24/7, however, they require designing test
cases manually, which are continuously executed at regular inter-
vals. In this talk, we present the RESTest testing ecosystem as an
alternative for automated and thorough online testing of RESTful
APIs. First, we describe its architecture and functionality. Then,
we explain how it can be used to test your own APIs, including
a demonstration. Lastly, we delve into our latest results when
deploying this testing ecosystem in practice. On the one hand,
we uncovered over 200 bugs in industrial APIs over the course
of 15 days of testing. On the other hand, we identified challenges
posed by online testing at scale, which open exciting research
opportunities in the areas of search-based software engineering
and machine learning.

I. INTRODUCTION

Web APIs provide access to data and functionality over
the Internet, via HTTP interactions. They are the cornerstone
of software integration, especially RESTful web APIs [1],
currently considered the de facto standard for Web integration.
As RESTful APIs become more pervasive and widespread
in industry, their validation becomes more critical than ever
before. A single bug in an API may affect tens or hundreds
of other services using it. In this scenario, test thoroughness
and automation are of utmost importance. Recently, academia
and industry have made great efforts to address this problem,
which has led to an explosion in the number of approaches
and tools for testing RESTful APIs. Research approaches are
focused on the automated generation of test cases, especially
from a black-box perspective (i.e., without requiring access
to the source code of the API). On the other hand, industrial
solutions are mostly concerned with automating test case ex-
ecution and providing online testing services, where APIs are
continuously tested while in production. Customers of online
testing platforms such as RapidAPI [2] or Sauce Labs [3]
may choose among different pricing plans determining features
such as the test execution frequency and the integration with
CI/CD platforms, among others.

In this talk, we present the RESTest testing ecosystem as a
powerful alternative for automated and thorough online testing
of RESTful APIs at scale. First, we describe its architecture
and its main features. Then, we make a demonstration on how
it can be used to test your own APIs. Lastly, we report on
our latest results on deploying the ecosystem to test industrial
APIs. In particular, we uncovered over 200 bugs over the

Fig. 1. Testing ecosystem architecture.

course of 15 days, but we also identified challenges of online
testing when performed on a large scale, some of which
could be tackled with search- and machine learning-based
approaches.

II. RESTEST TESTING ECOSYSTEM

The RESTest testing ecosystem is specifically designed for
online testing of RESTful web APIs, that is, it allows to
continuously test and monitor APIs in production for any given
period of time (e.g., days or months). It follows a black-box
strategy, where test cases are automatically derived from the
API specification (e.g., an OAS document [4]). Test cases are
continuously generated, executed and reported, and the test
results can be monitored in a user-friendly dashboard.

A. Architecture

Figure 1 depicts the architecture of the testing ecosystem.
As illustrated, the architecture is decoupled into multiple types
of bots, i.e., highly cohesive and autonomous programs that
perform specific tasks within the testing process (e.g., test
reporting). Bots can be independently developed and deployed
using different technologies. We distinguish between input
bots (support the generation and execution of test cases) and
output bots (responsible for analyzing and leveraging test out-
puts). Bots are started, stopped and monitored automatically
by a controller component, and they can optionally interact
with each other, e.g., by triggering the update of test reports.

There are two types of input bots: test bots, which generate
and execute test cases, and garbage collectors, which delete
resources created by test bots (e.g., playlists in the Spotify
web API). Regarding output bots, we conceive two types:
test reporters, which generate graphical test reports, and
test coverage computers, which compute the API coverage
achieved by test bots [5].

Intl. Summer School on Search- and Machine Learning-based Software Engineering

53

B. RESTest Framework

Test bots are based on RESTest [6], a black-box testing
framework for RESTful web APIs. This has several benefits.
On the one hand, existing test case and test data generation
strategies from RESTest are already available in the online
testing ecosystem, e.g., constraint-based testing [7] and re-
alistic input test data extracted from knowledge bases [8].
On the other hand, implementing new testing strategies is
straightforward, as it simply requires integrating them into
RESTest. For details on how to develop new components in
RESTest (including test case and test data generators), we refer
the reader to its documentation [9] and its reference paper [6].

C. How-to Guide

The configuration of our online testing ecosystem depends
on the APIs under test and the bots used to test the selected
APIs. Each API can be tested by multiple bots simultaneously.
For each test bot, the following resources are required:

• OAS specification of the API. This file contains a
machine-readable definition of the API that can be used
to drive the generation of test cases. Note that it can be
reused by multiple bots.

• Test configuration file. This file specifies the test data
generation strategy used by the bot, for instance, fuzzing
dictionaries [10], semantically-related data [8], or manu-
ally set data generators [7].

• Properties file. This file specifies several details related to
the testing process such as the type of testing to perform
(positive or negative), the test execution frequency, and
the number of test cases to generate (or total test time).

Besides test bots, the remaining components of the ecosys-
tem require little configuration: test reporters and test coverage
computers are enabled/disabled based on the configuration of
each test bot (as specified in its properties file); garbage collec-
tors only need to be configured for those APIs where resources
are created; the controller component is a ready-to-use set of
Bash scripts. In order to ease the configuration and deployment
of the whole ecosystem, we provide a supplementary package
explaining the required steps to this end [11].

III. RECENT RESULTS

We deployed our testing ecosystem for 15 days continuously
testing 13 industrial APIs, including highly popular APIs with
millions of users worldwide such as YouTube, Spotify and
Yelp. Overall, we generated 1,101,846 test cases, we uncov-
ered 389,216 test failures, and we conservatively narrowed
down these failures to 254 unique bugs. These bugs were
varied, including inconsistencies between API implementation
and API documentation, internal server errors with valid and
invalid input data, inconsistencies between the status codes and
response bodies, unparseable JSON responses and unexpected
client errors, to name a few. Based on our evaluation results,
we also extracted insightful conclusions such as the most
effective testing techniques (constraint-based testing and data
perturbation) and the most recurrent types of bugs (disconfor-
mities with the API specification), among others.

IV. CHALLENGES AHEAD

Despite our promising results, we identified several chal-
lenges hindering the adoption of automated test case gener-
ation methods for online testing of APIs at scale, including
automated fault identification (i.e., classifying thousands or
millions of failures into tens or hundreds of unique faults),
effective human interaction (i.e., leveraging human input to
make bots more effective), and optimal selection of test-
ing strategies (i.e., automatically determining the most ef-
fective techniques based on several factors), among others.
We envision the application of AI techniques to tackle these
challenges. For instance, search algorithms could be used
to automatically debug failures and isolate failure-inducing
inputs. Similarly, active learning algorithms could leverage
human input to improve the classification of faults by bots
(e.g., confirming/discarding failures labeled as “warning”).

V. CONCLUSION

Online testing of web APIs is becoming an increasingly
common practice in industry. However, existing platforms
mostly automate test execution, while test cases still need to
be manually implemented. In this talk, we overviewed the
RESTest testing ecosystem and its capabilities to find real-
world bugs in industrial APIs. We also highlighted challenges
for the application of such a framework in practice, and how
AI techniques could help address these challenges.

ACKNOWLEDGMENTS

This work has been partially supported by
FEDER/Ministerio de Ciencia e Innovación - Agencia Estatal
de Investigación under project HORATIO (RTI2018101204-B-
C21), by FEDER/Junta de Andalucı́a under projects APOLO
(US-1264651) and EKIPMENT-PLUS (P18-FR-2895), by the
FPU scholarship program, granted by the Spanish Ministry
of Education and Vocational Training (FPU17/04077).

REFERENCES

[1] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[2] “RapidAPI,” https://rapidapi.com, accessed March 2022.
[3] “Sauce Labs,” https://saucelabs.com, accessed March 2022.
[4] “OpenAPI Specification,” https://spec.openapis.org/oas/latest.html, ac-

cessed April 2022.
[5] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test Coverage Criteria

for RESTful Web APIs,” in 10th International Workshop on Automating
TEST Case Design, Selection, and Evaluation, 2019, pp. 15–21.

[6] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Automated
Black-Box Testing of RESTful Web APIs,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021, pp. 682–685.

[7] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-
Box Constraint-Based Testing of RESTful Web APIs,” in International
Conference on Service-Oriented Computing, 2020, pp. 459–475.

[8] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-
Cortes, “ARTE: Automated Generation of Realistic Test Inputs for Web
APIs,” IEEE Transactions on Software Engineering, 2022.

[9] “RESTest,” https://github.com/isa-group/RESTest, accessed April 2022.
[10] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST

API Fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering, 2019, pp. 748–758.

[11] “[Supplementary material] Online Testing of RESTful APIs: Promises
and Challenges,” https://doi.org/10.5281/zenodo.6365937, 2022.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

54

Type4Py: Machine Learning-based Type
Auto-completion for Python

Amir M. Mir
Department of Software Technology

Delft University of Technology
Delft, The Netherlands

Email: s.a.m.mir@tudelft.nl

Sebastian Proksch
Department of Software Technology

Delft University of Technology
Delft, The Netherlands

Email: s.proksch@tudelft.nl

Georgios Gousios
Department of Software Technology

Delft University of Technology
Delft, The Netherlands

Email: g.gousios@tudelft.nl

Abstract—In this short report, we present Type4Py, a tool that
assists Python developers to retrofit type annotations to their
codebases. It is powered by a deep learning model that is trained
on 5.2K open-source Python projects. Type4Py is available as a
Visual Studio Code extension.

I. INTRODUCTION

The Python programming language is extremely popular
nowadays among software developers as it is easy to use and
allows rapid prototyping. The IEEE Spectrum ranks Python
as the most popular programming language in 20211. Despite
its popularity, Python lacks static types, which causes type
errors and unexpected run-time exceptions. To mitigate these
issues, Python 3.5 added support for optional type annotations.
This means that Python developers can gradually add type
annotations to their existing codebases. However, this is a
daunting and error-prone task.

Researchers have recently proposed machine learning (ML)-
based type prediction models for dynamic programming lan-
guages [1], [2]. These ML-based type prediction models
perform sophisticated feature extraction and computationally
expensive analysis such as control/data flow analysis or search-
based validation, which makes them impractical to be used
in IDEs by developers. Motivated by this, very recently, we
proposed Type4Py [3], a deep similarity learning (DSL)-based
type inference model for Python. Specifically, the Type4Py
model is based on hierarchical neural networks, which learns
to discriminate between similar and dissimilar types in a high-
dimensional space, namely, type clusters. Given this, K-nearest
neighbor search is performed to suggest type annotations for
a test query.

Type4Py has mainly two advantages compared to the recent
state-of-the-art approaches, TypeWriter [1] and Typilus [2]:

1) Its mean reciprocal rank (MRR) score is 77.1%, which
is 8.1% and 16.7% higher than Typilus and TypeWriter,
respectively. For example, considering a list of 10 pre-
dictions, a higher MRR score means that the model
predicts a correct type annotation among the first few
predictions in the list.

2) It is practical and can be used as a developer tool, i.e.,
it can be used in an IDE, Visual Studio Code, to assist

1https://spectrum.ieee.org/top-programming-languages/

Python developers to gradually adding type annotations
to their existing codebases.

In this short report, we present Type4Py as a developer tool.
It was initially released in July 2021 and its Visual Studio
extension2 has over 1,100 installations at the time of this
writing.

II. TYPE4PY

A. Core Features

Type4Py has the following main features:
• It is powered by a DSL-based model that is trained on the

ManyTypes4Py dataset [4] with 5.2K open-source Python
projects.

• It provides ML-based type auto-completion functionality
in Visual Studio Code. Figure 1 shows one usage example
from VS Code.

• It can predict type annotations for variables, functions’
arguments, and return values.

• It has a local model that runs end-to-end locally on
users’ machines. This solves common privacy concerns
by developers such as sharing or sending their source
codes to external servers.

B. Design

The design of Type4Py is shown in Figure 2. At the client-
side, to provide type auto-completion, the VS Code extension
sends Python source code file(s) to either the local model or
the production server. At the server-side, a tiny REST API with
a prediction endpoint queries the pre-trained Type4Py model.
For the model to predict types, Python files are processed to
extract features/type hints (see [3] for details). Finally, the
predicted type information is returned as a JSON response
to the extension.

C. Implementation

The VS code extension is written in TypeScript3 and the
Type4Py model is implemented in Python 3 using the PyTorch
framework4. Specifically, The REST API is implemented

2https://marketplace.visualstudio.com/items?itemName=saltud.type4py
3https://github.com/saltudelft/type4py-vscode-ext
4https://github.com/saltudelft/type4py

Intl. Summer School on Search- and Machine Learning-based Software Engineering

55

Fig. 1. A type auto-completion example from VS Code. The expected return type is Optional[str].

Fig. 2. Design and deployment of Type4Py in practice

using the light-weight Flask web framework. The pre-trained
Type4Py model uses the ONNX runtime5 for faster inference
on both CPUs and GPUs. For KNN search, Annoy6 is em-
ployed, which is fast and memory-efficient. To analyze Python
source files for feature extraction, we use our LibSA4Py
library7.

D. Deployment

To deploy Type4Py, a Docker image is created which con-
tains the pre-trained model, pre-processing/feature extraction
component, and the REST API. To scale the deployment, a
number of containerized stateless Type4Py applications are
currently deployed on our Kubernetes cluster.

ACKNOWLEDGMENT

This research work was funded by H2020 grant 825328
(FASTEN).

5https://onnxruntime.ai/index.html
6https://github.com/spotify/annoy
7https://github.com/saltudelft/libsa4py

REFERENCES

[1] M. Pradel, G. Gousios, J. Liu, and S. Chandra, “Typewriter: Neural
type prediction with search-based validation,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 209–
220.

[2] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao, “Typilus: neural
type hints,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 91–105.

[3] A. M. Mir, E. Latoskinas, S. Proksch, and G. Gousios, “Type4py:
Practical deep similarity learning-based type inference for python,” in
2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE). IEEE, 2022.

[4] A. M. Mir, E. Latoškinas, and G. Gousios, “Manytypes4py: A benchmark
python dataset for machine learning-based type inference,” in 2021
IEEE/ACM 18th International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2021, pp. 585–589.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

56

SAd-CloudSim: A Toolkit for Modeling and
Simulation of Self-Adaptive Cloud Software

Architectures
Maria Salama

School of Computer Science
University of Birmingham

Birmingham, UK
m.salama@bham.ac.uk

Abstract—Cloud-based software systems are increasingly be-
coming complex and operating in highly dynamic environments.
Self-adaptivity and self-awareness have recently emerged to cope
with such level of dynamicity and scalability. Self-adaptivity has
been motivated as a solution to achieve the level of dynamicity
and scalability necessary for these systems, as well as to comply
with the changes in components, fluctuations in workloads and
environmental conditions during runtime. This talk presents
a modeling and simulation tool for self-adaptive cloud archi-
tectures. The tool provides significant benefits for designing
self-adaptive cloud architectures, as well as testing adaptation
mechanisms. The tool is also beneficial as a symbiotic simulator
during runtime to support runtime adaptation decisions.

I. INTRODUCTION

Self-adaptive software architectures are expected to manage
themselves following the principles of autonomic computing,
to respond to changes in end-user requirements and the envi-
ronment and to cope with uncertainty in runtime operation for
continued satisfaction of quality requirements under changing
context conditions. In self-adaptive systems, adaptation deci-
sions are taken during runtime with the aid of feedback loops
(individual, collective or decentralised), analytical models, or
by learning from historical data [1]. In this case, symbiotic
simulations are powerful tools to support adaptation decisions
during runtime. Such tools can be used symbiotically with
the adaptation controller of the system, due to their ability to
dynamically incorporate real-time data sensed from the system
in running what-if scenarios and feedback to the adaptation
controller with the effects of adaptation decisions.

On another side, simulation tools are needed to fill the
gap between the conceptual research and the proof-of-concept
implementation [2]. Such tools help to systematically model
and study the behavior and performance of these systems
that tend to operate in dynamically changing environments
hard to define during system design [2]. In the context of
cloud computing, simulators were known as tools to support
and accelerate research and development of cloud computing
systems, applications and services, as quantifying the per-
formance of service provision in real cloud environment is
challenging [3] [4].

Given the highly dynamic operating environment of cloud
computing and its on-demand nature, cloud architectures tend
to heavily leverage on adaptation to dynamically fulfill the
uncertain and changing runtime demand [3]. The case of
self-adaptive cloud architectures combines challenges of both
clouds and self-adaptive architectures. In such cases, testing
architecture design or resources provisioning mechanisms,
quantifying the architecture performance, and measuring the
quality of service provisioned in real environments are chal-
lenging tasks.

In this talk, we present SAd-CloudSim, a tool for modeling
and simulation self-adaptive cloud architectures. The toolkit
is build on the widely adopted cloud simulation environment
CloudSim [3] [4]. The new extensions turn CloudSim to
work with real systems at runtime as a symbiotic simulator,
where self-adaptation helps in taking well-informed adaptation
decisions.

The SAd-CloudSim toolkit offers the following novel exten-
sions: (i) modeling and simulation of adaptation mechanisms
for large-sale cloud-based systems, (ii) a self-contained plat-
form for modeling and testing self-adaptation mechanisms,
(iii) support for testing the performance of cloud systems
under varying dynamic workloads and with different quality
goals, and (iv) support extensions for modeling and testing
self-adaptation frameworks and techniques.

The tool is published as open-source software, available at
https://github.com/m-salama/SAdSAwCloudSim.

II. SAD-CLOUDSIM ARCHITECTURE AND DESIGN

The SAd-CloudSim tool is built on top of the CloudSim core
simulation engine and CloudSim core. The Self-Adaptation
layer is added on top of the cloud core architecture, to
model the adaptation controller of a self-adaptive software
system. Researchers and practitioners, willing to design an
adaptation technique or study the efficiency of an existing one,
would need to implement their techniques in this layer. The
top-most layer is the Simulation Application, inherited from
CloudSim, which models the specification of the simulation
to be conducted using the tool. Such specifications allow

Intl. Summer School on Search- and Machine Learning-based Software Engineering

57

configuring the simulation of dynamic workloads, different
service types and user requirements.

A foundational self-adaptation controller consists of: (i)
monitor for correlating quality data, (ii) detector for analyzing
the data provided by the monitor and detecting violations to
trigger adaptation when necessary, (iii) adaptation engine to
determine what needs to be changed and select the optimal
adaptation strategy, and (iv) adaptation executor responsible
for applying the adaptation action on the underlying infras-
tructure. Our initial implementation of SAd-CloudSim includes
this foundational version of adaptation controller. Such com-
ponents could be further extended to study more complex
adaptation mechanisms, such as pro-active adaptations or
MAPE-K adaptation process [1].

The Monitor component is responsible for monitoring the
achievement of quality requirements. The Detector checks
any violations occurring during runtime against quality goals.
Whenever a violation is detected, adaptation is triggered. The
Adaptation Engine is responsible for analyzing the current
situation and selecting the optimal adaptation strategy that
would achieve the quality targets, e.g. increasing VMs ca-
pacity. The selected adaptation tactic is executed dynamically
during runtime on the cloud infrastructure by the Adaptation
Executor.

Quality goals are the main objective or trigger for self-
adaptation. QoS Goals represent the quality of service targets
required to be fulfilled. Whenever violated, an adaptation
should take place to achieve the quality goals. For each QoS
Goal, a set of possible adaptation tactics is implemented in
the tactics catalog. Also, adaptation rules are defined as if-
condition-then-action rules, where the conditions are quality
requirements and the actions are response tactics.

III. SIMULATION OF SELF-ADAPTIVE ARCHITECTURES
USING SAD-CLOUDSIM

We have extended some core classes of CloudSim by
adding necessary quality and power (energy) metrics. A Run-
timeWorkload is added to allow conducting experiments for
consecutive time intervals, and user requirements are added to
configure QoS requirements.

The Self-Adaptation package encapsulates the components
necessary for modeling and simulating a self-adaptive archi-
tecture. Our initial implementation includes the basic function-
alities of these components. Figure 1 depicts the flow of the
simulation process of self-adaptation. These components could
be further extended with more sophisticated implementations,
such as MAPE-K. This package is composed of the following
classes:

• Goals Model class is the list of goals objects loaded from
a configuration file.

• Monitor class contains methods sensing, measuring and
collecting actual data of the QoS parameters of the
executed requests.

• Detector class contains a method triggered to run after
receiving data from the monitor. It checks the runtime

values of the quality metrics against the Goals Model. If
a violation is detected, adaptation is triggered.

• Adaptation Engine class is responsible for selecting the
optimal adaptation action after receiving the adaptation
trigger. The adaptation action is selected from the Adap-
tation Tactics Catalog according to the adaptation rules.

• Adaptation Tactics Catalog class contains a list of adap-
tation tactics.

• Adaptation Rule class links quality attributes with their
adaptation tactics.

• Adaptation Executor class performs the actual execution
of the selected adaptation action.

Fig. 1. Self-Adaptation simulation process

ACKNOWLEDGMENT

Maria’s PhD studentship was funded by the School of
Computer Science, The University of Birmingham, UK. This
research was supported in part by the Universitas 21 and the
CLOUDS Lab, University of Melbourne, Australia. The author
would like to especially thank Rodrigo N. Calheiros and Maria
A. Rodriguez for the support in developing and testing the
toolkit.

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, pp. 1–42, 2009.

[2] T. D. Nya, S. C. Stilkerich, and P. R. Lewis, “A modelling and simulation
environment for self-aware and self-expressive systems,” in IEEE 7th
International Conference on Self-Adaptation and Self-Organizing Systems
Workshops (SASOW), 2013, pp. 65–70.

[3] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities,” in International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 2009, pp. 1–11.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

Intl. Summer School on Search- and Machine Learning-based Software Engineering

58

Author Index

Ait
Adem, 11

Alonso
Juan C., 13

Applis
Leonhard, 29

Arcega
Lorena, 37, 41

Arratibel
Maite, 31

Arrieta
Aitor, 31

Augusto
Cristian, 15

Ayerdi
Jon, 31

Birchler
Christian, 5, 33

Brandt
Carolin, 35

Cánovas Izquierdo
Javier, 11

Cabot
Jordi, 11

Casamayor
Rodrigo, 37

Cetina
Carlos, 37, 41, 45

Chicano
Francisco, 49

Criado
Javier, 21

de la Riva

Claudio, 15
Delgado-Pérez

Pedro, 39
Di Ruscio

Davide, 4

Feldt
Robert, 3

Ferrer
Javier, 49

Font
Jaime, 41, 45

Franch
Xavier, 25

García
Félix, 19

García-Pozo
Pedro P., 17

Gousios
Georgios, 55

Gutiérrez
María, 19

Iribarne
Luis, 21

Khatami
Ali, 43

Lapeña
Raúl, 45

Llopis
Juan Alberto, 21

Lozano-Pinilla
José R., 23

Marcén

59

Intl. Summer School on Search- and Machine Learning-based Software Engineering

Ana, 45
Marco

Jordi, 25
Martin-Lopez

Alberto, 53
Medina-Bulo

Inmaculada, 39
Minku

Leandro, 7
Mir

Amir M., 55
Mirabella

A. Giuliano, 47
Morán

Jesús, 15
Motger

Quim, 25

Pérez
Francisca, 37, 41

Panichella
Sebastiano, 5

Proksch
Sebastian, 55

Ramírez
Aurora, 17, 39

Romero
José Raúl, 17, 39

Ruiz-Cortés
Antonio, 13

Saborido
Rubén, 49

Salama
Maria, 57

Segura
Sergio, 13

Terragni
Valerio, 31

Tonella
Paolo, 31

Tuya
Javier, 15

Valle-Gómez
Kevin J., 39

Vicente-Chicote
Cristina, 23

60

	Welcome Note
	Organizing Committee
	I Seminars
	Bayesian Analysis of Software Engineering Data (Robert Feldt)
	Intelligent Recommender Systems in Software Development (Davide Di Ruscio)
	Testing with Fewer Resources: Toward Adaptive Approaches for Cost-effective Test Generation and Selection (Sebastiano Panichella and Christian Birchler)
	Data Mining Algorithms Using/Used-by Optimizers: a DUO Approach to Software Engineering (Leandro Minku)

	II Student talks
	Sustainability in Open Source: Bots to the Rescue (Adem Ait, Javier Luis Cánovas Izquierdo and Jordi Cabot)
	Automated Generation of Test Oracles for RESTful APIs (Juan C. Alonso, Sergio Segura and Antonio Ruiz-Cortés)
	Resource Optimization in End-to-End Testing (Cristian Augusto, Jesús Morán, Claudio de la Riva and Javier Tuya)
	Third-party Library Recommendations for Python Developers using Software Analytics Techniques (Pedro P. García-Pozo, Aurora Ramírez and José Raúl Romero)
	Green IN Artificial Intelligence: Energy Impact of Machine Learning Models (María Gutiérrez and Félix García)
	Discovery Service Federation in the Web of Things (Juan Alberto Llopis, Javier Criado and Luis Iribarne)
	SmartTLC: Towards Smart Traffic Light Systems (José R. Lozano-Pinilla and Cristina Vicente-Chicote)
	Transforming Mobile Software Ecosystems with Semi-Automatic Feature Integration through Dialogue-Based Feedback (Quim Motger, Xavier Franch and Jordi Marco)

	III New ideas and work in progress
	BLEU it All Away! Refocusing SE ML on the Homo Sapiens (Leonhard Applis)
	Generating Complex Metamorphic Relations for Cyber-Physical Systems with Genetic Programming (Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella and Maite Arratibel)
	Regression Testing for Self-driving Cars as Cyber-physical Systems in Virtual Environments (Christian Birchler)
	Incremental Just-In-Time Test Generation in Lock-Step with Code Development (Carolin Brandt)
	Towards Bug Localization in Models in Game Software Engineering (Rodrigo Casamayor, Lorena Arcega, Francisca Pérez and Carlos Cetina)
	Improving Search-based Test Case Generation by means of Interactive Evolutionary Computation (Pedro Delgado-Pérez, Aurora Ramírez, Kevin J. Valle-Gómez, Inmaculada Medina-Bulo and José Raúl Romero)
	Road to Human as the Fitness Function (Jaime Font, Lorena Arcega, Francisca Pérez and Carlos Cetina)
	GitHub Actions Adoption Among Projects, What Are The Best Practices? (Ali Khatami)
	Traceability Links Recovery in BPMN Models through Evolutionary Learning to Rank (Raúl Lapeña, Ana Marcén, Jaime Font and Carlos Cetina)
	Active Learning-driven Testing of Web APIs (A. Giuliano Mirabella)
	Automatizing Software Cognitive Complexity Reduction: What is Next? (Rubén Saborido, Javier Ferrer and Francisco Chicano)

	IV Tool showcases
	Online Testing of RESTful APIs with RESTest (Alberto Martin-Lopez)
	Type4Py: Machine Learning-based Type Auto-completion for Python (Amir M. Mir, Sebastian Proksch and Georgios Gousios)
	SAd-CloudSim: A Toolkit for Modeling and Simulation of Self-Adaptive Cloud Software Architectures (Maria Salama)

	Author Index

