

Programación Declarativa

Ingeniería Informática Especialidad de Computación Cuarto curso. Primer cuatrimestre

Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico: 2015 - 2016

Práctica número 1.- Introducción al lenguaje Scheme

- Observaciones:
 - o Sólo se han de presentar los ejercicios marcados con un **asterisco** (*), que deberán estar **contenidos en un mismo fichero**.
 - o Todas las **funciones** que se escriban deben tener un **comentario de cabecera** que contenga, al menos, la siguiente información:
 - Nombre de la función
 - Objetivo
 - Descripción de la solución (salvo que se deduzca de forma inmediata)
 - Significado de los parámetros de entrada.
 - Significado del resultado que devuelve.
 - Funciones auxiliares a las que llama.
- 1. **Constantes y literales**: teclea las siguiente constantes y literales (creados con la forma especial **quote** o con la comilla simple) y comprueba el resultado devuelto por el intérprete de *Scheme*:

```
; Los comentarios comienzan con el símbolo de "punto y coma"
#t
                     ;; constante lógica de verdadero
3
                     ;; número entero
                     ;; número real
20.5
"ejemplo de cadena" ;; se utilizan comillas dobles para delimitar las cadenas
                      ;; no debes olvidar las comillas de cierre
"dato
'dato
                      ;; se utiliza la comilla simple para crear un literal
                      ;; también se puede utilizar quote para crear un literal
(quote dato)
                      ;; la variable dato no es un literal
dato
                      ;; y producirá un error porque posee no todavía un valor
'#t
                      ;; las constantes lógicas también son literales
(quote #t)
                      ;; los números también son literales
(quote 3)
20.5
(quote 20.5)
(quote "ejemplo de cadena") ;; una cadena también es un literal
```

```
(+ 2 3) ;; expresión aritmética con notación prefija

'(+ 2 3) ;; la expresión aritmética se convierte en un literal y "no" se evalúa

(quote (+ 2 3)) ;; la expresión aritmética se convierte en un literal y "no" se evalúa

'(a b c) ;; lista de literales

(quote '(a b c)) ;; otra forma de crear una lista de literales

'(Ana Luis Juan)) ;; otra forma de crear una lista de literale
```

2. Teclea las siguientes expresiones aritméticas y comprueba el resultado de cada una de ellas.

; **Siempre** se debe **separar** el operador de los argumentos (+ 2 3); Si no se separa el operador del argumento, se producirá un **error** (+2 3)

(+ 0.1)	(+ 0.001)	(+ 0.00000001)	(+ 3)
(+ 3 4)	(+ 3 4 5)	(+ 3 4.)	(+ 3 4.0)
(+)			
(- 2)	(- 10 2)	(- 10 3 1)	(- 10 3. 1)
(* 2)	(* 2 3 4)	(* 2.0 3 4)	(*)
(/ 5)	(/ 5.)	(/ 102)	(/ 8 3)
(/ 8. 3)	(/ 8 3.0)	_	

```
;; Aproximación racional al número \pi (/ 355 113) ;; Aproximación al número \pi con seis decimales exactos. (/ 355.0 113) ;; Se divide el primer argumento por el producto de los demás (/ 60 3 5 4) ;; Combinación de operadores (/ (* 9 4 3) (+ 3 2)) ;; Expresión "sangrada" con tabuladores: más legible (/ (* 9 4 3) (+ 3 2))
```

3. Escribe las siguientes expresiones aritméticas con notación **prefija**:

a.
$$2 * 3 + 4 * (5 - 2)$$

b. $\frac{(5 + 2)(5 - 2)}{5 * 4 - 3 * 6 + 1}$

4. Utiliza la forma especial **define** para declarar las siguientes variables y asignarles los valores que se indican:

Variable	Valor			
iva	18			
mayor-edad	18			
meses	12			
X	2.5			
у	-12.3			
Z	2 x + y ³			
partido1	36.5			
partido2	30.75			
blanco	2.55			
nulo	0.34			
;; comprueba si el intérprete admite variables acentuadas				
abstención	100 - partido1 - partido2 - blanco - nulo			
celsius	19.5			
fahrenheit	32.0 + (9.0/5.0) Celsius			

5. ¿Qué ocurre si se aplica **set!** sobre una variable no definida previamente? Por ejemplo:

(**set**! votantes 23732)

6. Define las siguientes variables y escribe en *Scheme* las expresiones asociadas a las **funciones matemáticas predefinidas** que se indican:

Variable	Valor	
а	1	
b	2	
С	-3	
pi	355.0 / 1	113.0 ;; aproximación al número π con seis decimales exactos

Función	Significado	Ejemplo	Scheme
(abs x)	Valor absoluto de x	$abs (a^2 - b^2)$	
(sqrt x)	Raíz cuadrada de x	$\sqrt{b^2-4ac}$	
(square x)	Cuadrado de x	(3a-2b+c) ²	No existe
(exp x)	Exponencial de x	e^{2a}	
(log x)	Logaritmo neperiano de x	log(e ^a)	
(expt x y)	Potencia: x ^y	(2a-b) ^c	
(sin x)	Seno de x	sin(2 pi)	
(cos x)	Coseno de x	cos(pi/2)	
(tan x)	Tangente de x	tan(2 pi)	
(asin x)	Arco seno de x	asin(- 0.5)	
(acos x)	Arco coseno de x	acos(0.5)	
(atan x)	Arco tangente de x	atan(1.0)	
(atan x y)	Arco tangente de x/y	atan(a/b)	
(max x ₁ x ₂)	Máximo de x ₁ x ₂	max(a,b,c)	
(min x ₁ x ₂)	Mínimo de x ₁ x ₂	min(2a,3b,4c)	
(gcd x ₁ x ₂)	Máximo común divisor	gcd(12,15,-18)	
(lcm x ₁ x ₂)	Mínimo común múltiplo	Icm(12, 15, -18)	

Función	Significado	Ejemplo	Scheme
(floor x)	Mayor entero no más grande que x	floor(-2.7)	
		floor(7.5)	
(ceiling x)	Menor entero no más pequeño que x	ceiling(-2.7)	
		ceiling(7.5)	
(truncate x)	Entero más próximo a x cuyo valor absoluto no es más grande que el valor absoluto de x	truncate(-2.7)	
		truncate(7.5)	
(round x)	Entero más próximo a x; redondeando a un número par si x está justo entre dos enteros.	round(-2.5)	
		Round(7.5)	
(modulo x y)	Resto de la división entera (Signo del divisor)	modulo (12, 5)	
		modulo(12, -5)	
		modulo(-12, 5)	
(quotient x y)	Cociente de la división entera	quotient(12,5)	
(remainder x y)	Resto de la división entera (Signo del dividendo)	remainder(12, 5)	
		remainder(12,-5)	
		remainder(-12,5)	

- 7. (*) Codifica las siguientes funciones:
 - a. Función que convierta los grados Celsius en grados Fahrenheit.
 - Ejemplos: 0°C → 32°F, 100°C → 212°F
 - b. Función que convierta los grados Fahrenheit en grados Celsius.
 - c. Función que calcule el área de un rombo: (D d) / 2, donde D es la diagonal mayor y d la diagonal menor.
 - **Observación:** comprueba si el intérprete distingue entre variables escritas en mayúsculas o minúsculas.
 - d. Función que calcule el volumen de una esfera: $(4/3) \pi r^3$
 - e. Función que calcule la superficie de una esfera: $4 \pi r^2$
 - f. Función que calcule el volumen de un cilindro circular, donde h es la altura y r es el radio de la base.
- 8. (*) Codifica las siguientes funciones sobre distancias en el plano euclídeo:
 - a. **Distancia euclídea** entre dos puntos P1 = (x1, y1) y P2 = (x2, y2). $distancia - euclídea(P1, P2) = \sqrt{(x2 - x1)^2 + (y2 - y1)^2}$
 - b. **Distancia-Manhattan** entre dos puntos P1 = (x1, y1) y P2 = (x2, y2).

distancia - Manhattan(P1, P2) =
$$|x2 - x1| + |y2 - y1|$$

c. **Distancia-ajedrez** entre dos puntos P1 = (x1, y1) y P2 = (x2, y2).

distancia - ajedrez(P1, P2) =
$$max(|x2 - x1|, |y2 - y1|)$$

- 9. (*) Codifica las siguientes funciones sobre figuras geométricas
 - a. Función denominada área-rombo
 - Los argumentos de la función serán las coordenadas de los vértices del rombo.
 - Se debe utilizar como función auxiliar la función **distancia-euclídea** definida en el ejercicio 8.a
 - Utiliza los comentarios para indicar en qué **orden** se han de introducir las coordenadas.
 - b. Función denominada área-triángulo
 - Ha de calcular el área de un triángulo utilizando la fórmula de Herón.
 - La función ha de recibir como argumentos a las coordenadas de los vértices de un triángulo.
 - Se debe utilizar como función auxiliar la función **distancia-euclídea** definida en el ejercicio 8.a
 - Utiliza los comentarios para indicar en qué **orden** se han de introducir las coordenadas
- 10. (*) Codifica las siguientes funciones:
 - a. Función denominada distancia-punto-recta
 - Ha de calcular la distancia de un punto $P = (x_0, y_0)$ a una recta $r \equiv a x + b y + c = 0$ mediante la siguiente fórmula

$$d(P,r) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

- b. Función denominada distancia-punto-recta-2
 - Ha de calcular la distancia de un punto P = (x0,y0) a la recta que pasa por otros dos puntos P1 = (x1, y1) y P2 = (x2, y2).
 - Sugerencia:
 - o En primer lugar, determina la recta r = a x + b y + c = 0 que pasa por P1 y P2
 - o A continuación, utiliza la función del apartado "a".
- 11. (*) Utiliza la forma especial *let* para codificar la función área-trapecio.
 - Ha de calcular el área de un trapecio, pero recibiendo como argumentos las coordenadas de los vértices de forma ordenada.
 - Se han de utilizar las funciones auxiliares que permitan calcular la distancia entre dos puntos y la distancia de un punto a una recta que han sido previamente definidas.
 - Observación:
 - o Utiliza los comentarios para indicar en qué orden se han de introducir las coordenadas de los puntos.