

Programación Declarativa

Ingeniería Informática Especialidad de Computación Cuarto curso. Primer cuatrimestre

Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico: 2015 - 2016

Práctica número 3.- Iteración, recursión y funciones usadas como parámetros o devueltas como resultados

1. Números amigos

- Dos números naturales son amigos si la suma de los divisores de uno es igual al otro número y viceversa.
- El menor par de números amigos es el formado por el 220 y 284:
 - Suma de los divisores de 220 (excepto 220):

$$1 + 2 + 4 + 5 + 10 + 20 + 11 + 22 + 44 + 55 + 110 = 284$$

Suma de los divisores de 284 (excepto 284):

$$1 + 2 + 4 + 71 + 142 = 220$$

- Otros números amigos son (1184 y 1210) (6232 y 6368), (2620 y 2924)...
- a. Codifica una función **recursiva** denominada **suma-divisores** para calcular la suma de los divisores de un número natural (excepto el propio número)
- b. Utiliza la función **suma-divisores** para codificar un predicado denominado **amigos?** que permita comprobar si dos números son o no amigos.
- c. Utiliza el predicado **amigos?** para codificar un predicado denominado **perfecto?** que permita comprobar si un número es perfecto, es decir, es igual a la suma de sus divisores inferiores a él.

Por ejemplo: el número 28 es perfecto porque 28 = 14 + 7 + 4 + 2 + 1

- Nota: si se utiliza el par (28 y 28) y se comprueba que son "amigos" entonces 28 será "perfecto".
- 2. Un número es **primo** si no tiene divisores propios menores que su raíz cuadrada. Codifica dos predicados que determinen si un número es primo no:
 - a. El primer predicado se denominará **primo-iterativo?** y utilizará la forma especial "do" para crear una función iterativa.
 - b. El segundo predicado se denominará primo-recursivo? y será una función recursiva

3. El número áureo

El número áureo se define como

$$\varphi = \frac{1+\sqrt{5}}{2} = 1,618033989....$$

• El número áureo también se puede calcular mediante la siguiente suma infinita

$$\varphi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}}$$

• Codifica una función **iterativa** denominada **"suma-aureo"** que permita calcular el número áureo usando la suma anterior. La función recibirá como parámetro el número de sumandos.

4. Número e

 Considérese el término general de una sucesión numérica que converge al número e: 2.718281...

$$a_n = (1 + 1/n)^n$$

- Codifíquense las siguientes funciones:
 - o término-número-e
 - Calculará el término n-ésimo de la sucesión numérica.
 - Recibirá como parámetro el valor de n.
 - o límite-sucesión-número-e-iterativa
 - Se debe codificar una función iterativa que permita calcular el límite de la sucesión numérica que converge al número e.
 - La función debe recibir como argumento la cota de error, que permitirá terminar la función cuando dos elementos consecutivos de la sucesión disten menos que dicha cota de error.

5. Límite de una sucesión numérica convergente

- Codifica una función **iterativa** denominada "**límite-iterativa**" que permita calcular una aproximación al límite de **cualquier** sucesión numérica convergente.
- La función debe recibir como argumentos a:
 - Una función que represente el término general de la sucesión numérica convergente.
 - La cota de error, que permitirá terminar la función cuando dos elementos consecutivos de la sucesión disten menos que dicha cota de error.
- ¿Cómo se llamaría a la función "límite-iterativa" si se desea calcular el límite de la sucesión numérica cuyo término general es $a_n = (1 + 1/n)^n$ con una cota de error de 0.001?

6. Aproximaciones al número π :

• Leibniz propuso la siguiente serie numérica para calcular una aproximación a $\pi/4$:

$$\frac{\pi}{4} = \sum_{n=1}^{\infty} f(n) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

- a. Escribe una función denominada **término-Leibniz** que reciba un número entero **n** y calcule el "n-ésimo" término de la serie de Leibniz.
- b. Escribe una función **iterativa**, denominada **Leibniz-pi-1**, que reciba como parámetro el número de términos n de la serie propuesta por Leibniz que se deseen sumar.
- c. Escribe una función **iterativa**, denominada **Leibniz-pi-2**, que reciba como parámetro una **cota de error** y termine cuando la diferencia entre dos términos consecutivos de la sucesión sea inferior a dicha cota.
- Wallis propuso utilizar la siguiente serie para calcular una aproximación a $\pi/4$:

$$\frac{\pi}{4} = \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{8}{9} \times \dots$$

 a. Codifica una función denominada factor-Wallis que reciba como parámetro un número natural n y devuelva como resultado el n-ésimo factor de la sucesión de Wallis.

Por ejemplo:

- b. Escribe una función **iterativa** denominada **Wallis-iterativa** que reciba como parámetro un **número** natural que indicará cuántos factores se han de multiplicar.
- c. Escribe función **recursiva de cola** denominada **Wallis-recursiva** que reciba como parámetro una cota de error, de forma que la función terminará su ejecución cuando el factor que se vaya a multiplicar esté comprendido entre los siguientes valores:

- o Observación: la sucesión de Wallis converge "muy lentamente".
- Fracción continua
 - \circ Se puede obtener una aproximación al número π usando la siguiente fracción continua:

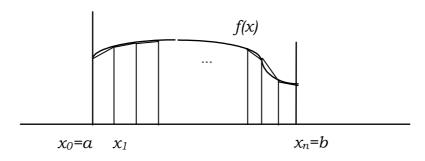
$$\frac{4}{\pi} = 1 + \frac{1}{3 + \frac{4}{5 + \frac{9}{7 + \cdots}}}$$

- O Codifica una función **iterativa** que permita calcular una aproximación a $4/\pi$ usando la fracción continua anterior. La función recibirá como parámetro el número de fracciones continuas que debe calcular.
- 7. Codifica una función iterativa, denominada integral, que reciba cuatro parámetros:
 - Los dos extremos de un intervalo: a y b
 - Una función f que sea positiva en el intervalo [a,b]
 - Un número "n"

y devuelva la aproximación a la integral según el método de los trapecios.

$$\int_{a}^{b} f(x) \ dx = \sum_{i=0}^{n-1} \left(\frac{f(x_{i}) + f(x_{i+1})}{2} \right) * h$$

donde h = (b - a) / n y $x_i = a + i * h$



- ¿Cómo se calcularía el área de la función $f(x) = 3x^2 + 1$ definida en el intervalo [1,3]?
- 8. **Simpson** propuso un método para calcular la aproximación a la integral de una función en un intervalo [a,b]:

$$\int_{a}^{b} f(x) = (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{n-2} + 4y_{n-1} + y_n) \frac{h}{3}$$

donde

- n es un número es par
- h = (b a) / n

$$- y_k = f(a + h k)$$

- a. Codifica una función denominada **término-Simpson** que calcule el k-ésimo término de la sucesión de Simpson a partir de los siguientes parámetros:
 - o La función f
 - o El extremo inferior del intervalo a
 - o El incremento h
 - o El número natural k
- b. Utiliza la función **término-Simpson** para codificar una función **iterativa** denominada **Simpson-iterativo** que calcule la aproximación a la integral de una función **f** en un intervalo [a, b] utilizando n términos.
- c. ¿Qué valor se obtiene al calcular el área de la función $f(x) = 3 x^2$ en el intervalo [0,1] si se utiliza el valor n = 100?
- 9. El algoritmo de *Euclides* permite calcular el máximo común divisor (M.C.D.) de dos números naturales:

Dados "a" y "b", dos números naturales, donde "
$$a \ge b$$
", si $a = c b + r$ entonces M.C.D. $(a, b) = M.C.D.(b,r)$.

- El algoritmo concluirá cuando el segundo argumento sea cero, siendo el máximo común divisor el primer argumento. Si "a" es menor que "b", se calculará el M.C.D.(b,a).
- Ejemplo: cálculo del máximo común divisor de 630 y 198

a	630	198	36	18
b	198	36	18	0
r	36	18	0	

$$M.C.D.(630,198) = 18$$

- a. Codifica una función iterativa, denominada mcd-iterativo, que permita calcular el máximo común divisor de dos números.
- Codifica una función recursiva, denominada mcd-recursivo, que permita calcular el máximo común divisor de dos números.
- 10. Codifica una función denominada *incremento-funcional* que reciba una función *f* como parámetro y devuelva como resultado la función que calcularía la siguiente expresión

$$\frac{f(x+1)-2f(x)+f(x-1)}{4}$$

¿Cómo se invocaría la función incremento-funcional? Pon un ejemplo.

11. Codifica una función denominada diferencia-simétrica que reciba como parámetros dos funciones f y g y devuelva como resultado la función que calcularía la siguiente expresión:

$$|f(x)-g(x)|$$

¿Cómo se invocaría la función diferencia-simétrica? Pon un ejemplo.