
DECLARATIVE PROGRAMMINGDECLARATIVE PROGRAMMING
COMPUTER ENGINEERING 

COMPUTATION ESPECIALITY

FOURTH  YEAR

FIRST  FOUR-MONTH PERIOD

Subject 1.- Introduction to Scheme language

CÓRDOBA UNIVERSITY

SUPERIOR POLYTECHNIC SCHOOL

DEPARTMENT   OF
COMPUTER SCIENCE AND NUMERICAL ANALYSIS 



2

DECLARATIVE PROGRAMMINGDECLARATIVE PROGRAMMING PROGRAMPROGRAM

First part: 
Scheme

Second part: 
Prolog

Subject 1.- Introduction to Scheme language

Subject 2.- Expressions and Functions

Subject 3.- Conditional Predicates and 
Sentences

Subject 4.- Iteration and Recursion

Subject 5.- Compound Data Types 

Subject 6.- Data Abstraction 

Subject 7.- Reading and Writing

Subject 8.- Introduction to Prolog language

Subject 9.- Basic Elements of Prolog

Subject 10.- Lists

Subject 11.- Re-evaluation and  the “cut” 

Subject 12.- Input and  Output



3

First part: Scheme

Subject 1.- Introduction to Scheme language

Subject 2.- Expressions and Functions

Subject 3.- Conditional Predicates and Sentences

Subject 4.- Iteration and Recursion

Subject 5.- Compound Data Types 

Subject 6.- Data Abstraction 

Subject 7.- Reading and Writing

DECLARATIVE PROGRAMMINGDECLARATIVE PROGRAMMING PROGRAMPROGRAM



4

Contents
1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Scheme

Declarative Programming Subject 1.- Introduction to Scheme language



5

Contents
1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Scheme

Declarative Programming Subject 1.- Introduction to Scheme language



6

1. Fundamental Characteristics of Functional Programming

 Functional Programming is a subtype of Declarative
Programming 



7

1. Fundamental Characteristics of Functional Programming

 Declarative Programming (1 / 2)

 Objective: Problem description

“What” problem must be resolved?
 Notice:

- It does not mind “how” the problem is 
resolved

- It avoids the implementation features.



8

1. Fundamental Characteristics of Functional Programming

 Declarative Programming (2 / 2)

 Features

 Expressivity

 Extensible: 10% - 90% rule

 Protection 

 Mathematic Elegance

 Types: 

 Functional or Applicative Programming: 

- Lisp, Scheme, Haskell, …

 Logic Programming: Prolog



9

1. Fundamental Characteristics of Functional Programming 

 Principle of the “Pure” Functional Programming

“The expression value only depends on its sub-
expressions values, if such sub-expressions exist ”.

 Non collateral effects

The value of  “a + b” only depends on “a” and “b”.

 The function term is used in its mathematical sense. 

 No instructions: programming without assignments

 The impure Functional programming allows the 

“assignment instruction”



10

1. Fundamental Characteristics of Functional Programming

 Program structure in Functional Programming

 The program is a function composed of simpler 
functions

 Function execution:

 Receives the input data: functions arguments 
or parameters

 Evaluates the expressions

 Returns the Result: computed value of the 
function



11

1. Fundamental Characteristics of Functional Programming

 Type of Functional Languages

 Most of them are interpreted languages

 Some of them have compiled versions

 Memory management

 Implicit memory management:

 Memory management is a task of the interpreter.

 The programmer must not worry about memory 
management.

 Garbage collection: task of the interpreter.

In short: the programmer must only worry about the 
Problem description



12

Declarative Programming Subject 1.- Introduction to Scheme language

Contents
1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Scheme



13

2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Lexical (or static) versus dynamical scope

 Origin of Scheme



14

2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Lexical (or static) versus dynamical scope

 Origin of Scheme



15

2. Historic Summary of Scheme

 LISP

 John McCarthy (MIT)

 “Advice Taker” program: 

 Theoretical basis: Logic Mathematics

 Objective: Deduction and Inferences

 LISP: LISt Processing (1956 – 1958)

 Second historic language of Artificial Intelligence
(after IPL)

 At present time, second historic language in use
(after Fortran)

 LISP is based on Lambda Calculus (Alonzo Church)

 Scheme is a dialect of LISP



16

2. Historic Summary of Scheme

 LISP

 Functional Programming Characteristics 

 Recursion

 Lists

 Implicit memory management

 Interactive and interpreted programs 

 Symbolic Programming

 Dynamically scoped for non local variables



17

2. Historic Summary of Scheme

 LISP

 LISP’s contributions: 

 Built – in functions

 Garbage collection

 Definition Formal Language: LISP itself



18

2. Historic Summary of Scheme

 LISP

 Applications: Artificial Intelligence Programs

 Theorem verification and testing

 Symbolic differentiation and integration

 Search Problems

 Natural Language Processing 

 Computer Vision

 Robotics

 Knowledge Representation Systems

 Expert Systems

 And so on



19

2. Historic Summary of Scheme

 LISP

 Dialects (1 /2)

 Mac LISP (Man and computer or Machine – aided 
cognition): East Coast Version

 Inter LISP (Interactive LISP): West Coast Version

- Bolt, Beranek y Newman Company (BBN) 

- Research Center of Xerox at Palo Alto (Texas)

- LISP Machine



20

2. Historic Summary of Scheme

 LISP
 Dialects (2 / 2) 

 Mac LISP (Man and computer or Machine – aided 
cognition): East Coast Version

- C-LISP: Massachusetts University

- Franz LISP: California University (Berkeley). 
Compiled version.

- NIL (New implementation of LISP): MIT.

- PSL (Portable Standard LISP): Utah University

- Scheme: MIT.

- T (True):Yale University.

- Common LISP



21

2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Lexical (or static) versus dynamical scope

 Origin of Scheme



22

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation: 

 The  source code (high level) is transformed
into executable code (low level), which can be 
independently run.



23

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation

Source codeSource code  CompilerCompiler



24

Compilation Compilation 
errorserrors



Source codeSource code  CompilerCompiler

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation



25

Source codeSource code  CompilerCompiler  Executable Executable 
codecode

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation



26

Source codeSource code  CompilerCompiler  Executable Executable 
codecode



Input dataInput data

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation



27

Execution Execution 
errorserrors

Source codeSource code  CompilerCompiler  Executable Executable 
codecode



Input dataInput data

OutputOutput



2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation



28

Source codeSource code  CompilerCompiler  Executable Executable 
codecode



Input dataInput data

OutputOutput



2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation



29

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation



30

2. Historic Summary of Scheme

 Compilation versus interpretation 

 Interpretation or simulation: consists of a cycle  of 
three stages 



31

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation or simulation: consists of a cycle  of 
three stages

1. Analysis: the source code is analysed to 
determine the following correct sentence to 
be run.



32

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation or simulation: consists of a cycle  of 
three stages

1. Analysis: the source code is analysed to 
determine the following correct sentence to 
be run.

2. Generation: the sentence is transformed 
into executable code.



33

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation or simulation: consists of a cycle  of 
three stages

1. Analysis: the source code is analysed to 
determine the following correct sentence to 
be run.

2. Generation: the sentence is transformed 
into executable code.

3. Execution: the executable code  is run.



34

Source codeSource code  InterpreterInterpreter

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation



35

Source codeSource code  InterpreterInterpreter



Input dataInput data Interpretation Interpretation 
errorserrors

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation



36

Source codeSource code  InterpreterInterpreter

OutputOutput




Input dataInput data

Execution Execution 
errorserrors

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation



37

Source codeSource code  InterpreterInterpreter

OutputOutput




Input dataInput data

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation



38

 Compilation

- Independent

- Memory necessities

- Efficient

- Global

- No interaction

- Closed code during 
execution

 Interpretation

- Dependent

- No memory 
necessities

- Less efficient

- Local

- Interaction

- Open code during 
execution

2. Historic Summary of Scheme

 Compilation versus interpretation



39

2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Lexical (or static) versus dynamical scope

 Origin of Scheme



40

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 The scope rules determine the declaration of non

local identifiers 

 Non local identifiers:

 Variables or functions which can be used in a 
function or procedure but are not declared in 
that function or procedure

 Two types
 Lexical or static scope

- With “blocks structure”: Pascal, Scheme
- Without “blocks structure”: C, Fortran

 Dynamical scope:
- Always with “blocks structure”: Lisp, 

SNOBOL, APL



41

2. Historic Summary of Scheme
 Lexical (or static) versus dynamical scope
 Block structure
 A procedure or function can call

- Itself
- Its children (but not its grandchildren…)
- Its brothers (but not its nephews)
- Its father, grandfather, great-grandfather, …
- The brothers of its father, grandfather, …

 A procedure or function can be called by 
- Itself
- Its father (but not by its grandfather, …)
- Its children, grandchildren, great-

grandchildren, …
- Its brothers and their children, grandchildren, 

...



42

P

Declaration of procedure f

Declaration of procedure g

Declaration of procedure h

Declaration of procedure k

Declaration of procedure l

Declaration of procedure m

Declaration of procedure n

Example of 
blocks structure



43

P

f l

m n
g h

k Hierarchical blocks structure



44

f l

m n
g h

k Functions which can be called by f

P



45

f l

m n
g h

k Functions which can call f

P



46

f l

m n
g h

k Functions which can be called by h

P



47

f l

m n
g h

k Functions which can call h

P



48

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope

 The declaration of a non local identifier 
depends on the  closest lexical context

 The closest nesting rules



49

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope

 The declaration of a non local identifier 
depends on the  closest lexical context: 

You only have to read the program 

to determine the declaration of an identifier.



50

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope

 The closest nesting rules:
- The scope of a procedure (*) f includes the 

procedure f.
- If a non local identifier x is used in f then the 

declaration of x must be found in the closest
procedure  g which includes f

- Notice (*) : procedure, function or block



51

Example. 

Lexical scope 

with

“block structure”

Declaration of procedure h
Declaration of variable x  (x1)
Declaration of variable y  (y1)
Declaration of variable z  (z1)

Declaration of procedure g
Declaration of variable x (x2) 
Declaration of variable y (y2)

Declaration of procedure f
Declaration of variable x (x3)

Use of x  ( x3)
Use of y  ( y2)
Use of z  ( z1)

Use of x  ( x2)
Use of y  ( y2)
Use of z  ( z1)
Call to f

Use of x  ( x1)
Use of y  ( y1)
Use of z  ( z1)
Call to g



52

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope
 Without block structure:

- If x is not local for a specific function then it
is not local for all functions



53

int x;  /* x1 */
int y;  /* y1 */
int z;  /* z1 */

main()
{ 

int x;  /* x2 */
int y;  /* y2 */

/* Use of x  x2 */
/* Use of y  y2 */
/* Use of z  z1 */
/* Call to f */
f ();

}

f()
{
int x;  /* x3 */
/* Use of x  x3 */
/* Use of y  y1 */
/* Use of z  z1 */
}

Example in C:

without

“block structure”

Global variables
are not 
recommended



54

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Dynamical scope:

 The declaration of an identifier depends on the 
execution of the program

 The closest activation rules



55

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Dynamical scope:

 The declaration of an identifier depends on the 
execution of the program

You have to run the program 
to determine the declaration of an identifier



56

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Dynamical scope:

 The closest activation rules:

- The scope of a procedure (*) f includes the 
procedure f.

- If a non local identifier x is used in the 
activation of f then the declaration of x must 
be found in the closest active procedure  g
with a declaration of x

- Notice (*) : procedure, function or block



57

2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Notice: 

 The dynamical scope allows that an identifier
can be associated to different declarations
during the program execution



58

Program
Declaration of variable x

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Example:

Lexical

versus 

Dynamical

scope



59

Program

f g

f

f

h

Activation Stack Activation Tree



60

Program

f g

f

f

h

Program

Activation Stack Activation Tree



61

Program

f g

f

f

h

Program

f

Activation Stack Activation Tree



62

Program

f g

f

f

h

Program

Activation Stack Activation Tree



63

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree



64

Program

f g

f

f

h

Program

g

f

Activation Stack Activation Tree



65

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree



66

Program

f g

f

f

h

Program

g

h

Activation Stack Activation Tree



67

Program

f g

f

f

h

Program

g

h

f

Activation Stack Activation Tree



68

Program

f g

f

f

h

Program

g

h

Activation Stack Activation Tree



69

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree



70

Program

f g

f

f

h

Program

Activation Stack Activation Tree



71

Program

f g

f

f

h

Activation Stack Activation Tree



72

f

Program

Program
g

Program g

Program

f

g

Program
g

Program

h

Changes in the activation Stack (1 / 2)

Program

f

g

Program

h



73

f

g

Program

h

g

Program

h
g

Program

Program

Changes in the activation Stack (2 / 2)



74

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



75

Program

f g

f

f

h

Lexical scope

Activation Stack Activation Tree



76

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x1
Call to f
Call to g

Run with 

lexical scope



77

Program

f g

f

f

h

Program

Lexical scope

 Use of x1 of 
Program in Program

Activation Stack Activation Tree



78

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



79

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



80

Program

f g

f

f

h

Program

f

Lexical scope
 Use of x1 of Program
in f

Activation Stack Activation Tree



81

Program

f g

f

f

h

Program

Activation Stack Activation Tree

Lexical scope



82

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



83

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Lexical scope



84

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



85

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



86

Program

f g

f

f

h

Program

g

f

Activation Stack Activation Tree

Lexical scope
 Use of x1 of Program
in f



87

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Lexical scope



88

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



89

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x2
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



90

Program

f g

f

f

h

Program

g

h

Lexical scope

 Use of x2 of g in h

Activation Stack Activation Tree



91

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



92

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



93

Program

f g

f

f

h

Program

g

h

f

Activation Stack Activation Tree

Lexical scope
 Use of x1 of Program
in f



94

Program

f g

f

f

h

Program

g

h

Activation Stack Activation Tree

Lexical scope



95

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x2

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x2

Use of x
Call to f
Call to g

Run with 

lexical scope



96

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Lexical scope

 Use of x2 of g in g



97

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x2

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x2

Use of x
Call to f
Call to g

Run with 

lexical scope



98

Program

f g

f

f

h

Program

Activation Stack Activation Tree

Lexical scope



99

Program

f g

f

f

h

Activation Stack Activation Tree

Lexical scope



100

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



101

Program

f g

f

f

h

Dynamical scope

Activation Stack Activation Tree



102

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x1
Call to f
Call to g

Run with 

dynamical

scope



103

Program

f g

f

f

h

Program

Dynamical scope

 Use of x1 of 
Program in Program

Activation Stack Activation Tree



104

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



105

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



106

Program

f g

f

f

h

Program

f

Activation Stack Activation Tree

Dynamical scope

 Use of x1 of 
Program in f



107

Program

f g

f

f

h

Program

Activation Stack Activation Tree

Dynamical scope



108

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



109

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Dynamical scope



110

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



111

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x2

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



112

Program

f g

f

f

h

Program

g

f

Dynamical scope

 Notice: use of x2 of g
in f

Activation Stack Activation Tree



113

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Dynamical scope



114

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



115

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x2
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



116

Program

f g

f

f

h

Program

g

h

Dynamical scope
 Use of x2 of g in h

Activation Stack Activation Tree



117

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



118

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x2

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope



119

Program

f g

f

f

h

Program

g

h

f

Dynamical scope
 Notice: use of x2 of 
g in f

Activation Stack Activation Tree



120

Program

f g

f

f

h

Program

g

h

Activation Stack Activation Tree

Dynamical scope



121

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x2

Use of x
Call to f
Call to g

Run with 

dynamical

scope



122

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Dynamical scope
 Use of x2 of g in g



123

Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x2

Use of x
Call to f
Call to g

Run with 

dynamical scope



124

Program

f g

f

f

h

Program

Activation Stack Activation Tree

Dynamical scope



125

Program

f g

f

f

h

Activation Stack Activation Tree

Dynamical scope



126

2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Dynamically versus statically scope

 Origin of Scheme



127

2. Historic Summary of Scheme

 Origin of Scheme:

 Gerald Jay Sussman (MIT) and Guy Lewis Steele Jr. 

 Question: 

How would LISP be with lexical or static scope
rules?

 Answer: new language  Scheme

 More efficient implementation of recursion

 First class functions.

 Rigorous semantic rules

 Influence on Common LISP: lexical scope rules

 Revised 5 Report on the Algorithmic Language 
Scheme



128

2. Historic Summary of Scheme

 Scheme:

 Structure of scheme programs

 Sequence of 

- definitions of functions and variables

- and expressions



CÓRDOBA UNIVERSITY

SUPERIOR POLYTECHNIC SCHOOL

DEPARTMENT   OF
COMPUTER SCIENCE AND NUMERICAL ANALYSIS 

DECLARATIVE PROGRAMMINGDECLARATIVE PROGRAMMING
COMPUTER ENGINEERING 

COMPUTATION ESPECIALITY

FOURTH  YEAR

FIRST  FOUR-MONTH PERIOD

Subject 1.- Introduction to Scheme language


