CORDOBA UNIVERSITY
SUPERIOR POLYTECHNIC SCHOOL

DEPARTMENT OF
COMPUTER SCIENCE AND NUMERICAL ANALYSIS

DECLARATIVE PROGRAMMING

COMPUTER ENGINEERING
COMPUTATION ESPECIALITY

FOURTH YEAR
‘ ..w. A NI FIRST FOUR-MONTH PERIOD

|

F\NIN
DFTO, DE INFORMATICA
Y AMALISIS NUMERICO

Subject 1.- Introduction to Scheme language

DECLARATIVE PROGRAMMING PROGRAM

First part:
Scheme

Second part:
Prolog

Subject 1.- Introduction to Scheme language
Subject 2.- Expressions and Functions

Subject 3.- Conditional Predicates and
Sentences

Subject 4.- Iteration and Recursion
Subject 5.- Compound Data Types
Subject 6.- Data Abstraction
Subject 7.- Reading and Writing

Subject 8.- Introduction to Prolog language
Subject 9.- Basic Elements of Prolog
Subject 10.- Lists

Subject 11.- Re-evaluation and the ““cut”

Subject 12.- Input and Output

DECLARATIVE PROGRAMMING PROGRAM

First part: Scheme

Subject 1.- Introduction to Scheme language
Subject 2.- Expressions and Functions

Subject 3.- Conditional Predicates and Sentences
Subject 4.- Iteration and Recursion

Subject 5.- Compound Data Types

Subject 6.- Data Abstraction

Subject 7.- Reading and Writing

Declarative Programming Subject 1.- Introduction to Scheme language

Ccontents

1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Scheme

Declarative Programming Subject 1.- Introduction to Scheme language

Ccontents

1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Scheme

1. Fundamental Characteristics of Functional Programming

v Functional Programming is a subtype of Declarative
Programming

1. Fundamental Characteristics of Functional Programming
v Declarative Programming (1 / 2)

» Objective: Problem description

“What” problem must be resolved?

= Notice:

It does not mind “how’’ the problem is
resolved

It avoids the implementation features.

1. Fundamental Characteristics of Functional Programming
v Declarative Programming (2 / 2)
» Features
= EXxpressivity
= Extensible: 10% - 90% rule
= Protection
= Mathematic Elegance
» Types:
* Functional or Applicative Programming:
Lisp, Scheme, Haskell, ...

= Logic Programming: Prolog 8

1. Fundamental Characteristics of Functional Programming
v Principle of the “Pure” Functional Programming

“The expression value only depends on its sub-
expressions values, If such sub-expressions exist .

v" Non collateral effects
The value of “a + b” only depends on “a” and “b”.
v" The function term is used in its mathematical sense.
v No instructions: programming without assignments
» The impure Functional programming allows the

“assignment instruction”

1. Fundamental Characteristics of Functional Programming
v" Program structure in Functional Programming

» The program is a function composed of simpler
functions

> Function execution:

= Recelves the input data: functions arguments
or parameters

= Evaluates the expressions

= Returns the Result: computed value of the
function

10

1. Fundamental Characteristics of Functional Programming
v Type of Functional Languages
» Most of them are interpreted languages
» Some of them have compiled versions
v Memory management
» Implicit memory management:
= Memory management is a task of the interpreter.

= The programmer must not worry about memory
management.

» Garbage collection: task of the interpreter.

In short: the programmer must only worry about the
Problem description 11

Declarative Programming Subject 1.- Introduction to Scheme language

Ccontents

1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Scheme

12

2. Historic Summary of Scheme
v LISP
v' Compilation versus Interpretation
v’ Lexical (or static) versus dynamical scope

v Origin of Scheme

13

2. Historic Summary of Scheme
v LISP
v' Compilation versus Interpretation
v’ Lexical (or static) versus dynamical scope

v Origin of Scheme

14

2. Historic Summary of Scheme
v’ LISP
» John McCarthy (MIT)
» ‘““‘Advice Taker” program:
= Theoretical basis: Logic Mathematics
= Objective: Deduction and Inferences
» LISP: LISt Processing (1956 - 1958)

= Second historic language of Artificial Intelligence
(after IPL)

= At present time, second historic language in use
(after Fortran)

= LISP is based on Lambda Calculus (Alonzo Church)
» Scheme Is a dialect of LISP 15

2. Historic Summary of Scheme

v' LISP

» Functional Programming Characteristics

Recursion

Lists

Implicit memory management
Interactive and interpreted programs
Symbolic Programming

Dynamically scoped for non local variables

16

2. Historic Summary of Scheme
v’ LISP
» LISP’s contributions:
= Built - in functions
= (Garbage collection

= Definition Formal Language: LISP itself

17

2. Historic Summary of Scheme
v LISP

» Applications: Artificial Intelligence Programs
= Theorem verification and testing
= Symbolic differentiation and integration
= Search Problems
= Natural Language Processing
= Computer Vision
= Robotics
= Knowledge Representation Systems
= EXpert Systems
= And so on 18

2. Historic Summary of Scheme
v LISP
» Dialects (1 /2)

= Mac LISP (Man and computer or Machine - aided
cognition): East Coast Version

* |nter LISP (Interactive LISP): West Coast Version
Bolt, Beranek y Newman Company (BBN)
Research Center of Xerox at Palo Alto (Texas)
LISP Machine

19

2. Historic Summary of Scheme

v' LISP
» Dialects (2 7 2)

= Mac LISP (Man and computer or Machine - aided
cognition): East Coast Version

C-LISP: Massachusetts University

Franz LISP: California University (Berkeley).
Compiled version.

NIL (New implementation of LISP): MIT.

PSL (Portable Standard LISP): Utah University
Scheme: MIT.

T (True):Yale University.

Common LISP 20

2. Historic Summary of Scheme
v' LISP
v' Compilation versus Interpretation
v Lexical (or static) versus dynamical scope

v Origin of Scheme

21

2. Historic Summary of Scheme
v' Compilation versus interpretation
» Compilation:

= The source code (high level) is transformed
Into executable code (low level), which can be
Independently run.

22

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Compilation

Source code =2

23

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Compilation

Source code =2

\%

Compilation
errors

24

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Compilation

Source code > > Executable

code

25

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Compilation

Input data
v

Source code > > Executable

code

26

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Compilation

Input data
v
Source code > > Executable
¢ code
. v
Execution
Output

errors

27

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Compilation

Input data
N2
Source code > > Executable
code
N2

Output

28

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation

29

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation or simulation: consists of a cycle of
three stages

30

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation or simulation: consists of a cycle of
three stages

1. Analysis: the source code Is analysed to
determine the following correct sentence to
be run.

31

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation or simulation: consists of a cycle of
three stages

1. Analysis: the source code Is analysed to
determine the following correct sentence to
be run.

2. Generation: the sentence iIs transformed
INto executable code.

32

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation or simulation: consists of a cycle of
three stages

1. Analysis: the source code Is analysed to
determine the following correct sentence to
be run.

2. Generation: the sentence iIs transformed
INto executable code.

3. Execution: the executable code is run.

33

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation

Source code >| Interpreter

34

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation

Inputdata |hterpretation
V 7 errors

Source code >| Interpreter

35

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation

Input data
N2

Source code >| Interpreter
J AV
Output

Execution
errors

36

2. Historic Summary of Scheme
v' Compilation versus interpretation

» Interpretation

Input data
N2

Source code >| Interpreter

v
Output

37

2. Historic Summary of Scheme

v' Compilation versus interpretation

= Compilation = Interpretation
Independent - Dependent
Memory necessities - No memory
o necessities
Efficient
Less efficient
Global
. _ Local
NO Interaction
Interaction

Closed code during
execution - Open code during

execution
38

2. Historic Summary of Scheme
v' LISP
v' Compilation versus Interpretation
v Lexical (or static) versus dynamical scope

v Origin of Scheme

39

2. Historic Summary of Scheme

v Lexical (or static) versus dynamical scope

» The scope rules determine the declaration of non
local identifiers

> Non local identifiers:

= Variables or functions which can be used in a
function or procedure but are not declared In
that function or procedure

» Two types
= Lexical or static scope
With “blocks structure”: Pascal, Scheme
Without “blocks structure: C, Fortran
= Dynamical scope:

Always with “blocks structure”: Lisp,
SNOBOL, APL 40

2. Historic Summary of Scheme

v Lexical (or static) versus dynamical scope
» Block structure

= A procedure or function can call
Itself
Its children (but not its grandchildren...)
Its brothers (but not its nephews)
Its father, grandfather, great-grandfather, ...
The brothers of its father, grandfather, ...

= A procedure or function can be called by
Itself
Its father (but not by its grandfather, ...)

Its children, grandchildren, great-
grandchildren, ...

Its brothers and their children, grandchildren,
41

Example of
blocks structure

P

Declaration of

Declaration

Declaration

Declaration of

Declaration

Declaration

procedure T

Declaration of procedure g

of procedure h

of procedure k

procedure |

of procedure m

of procedure n

42

/N
o

Hierarchical blocks structure

43

/N N
o

K- Functions which can be called by f

44

/N N
o

k Functions which can call f

45

/N N
o

K Functions which can be called by h

46

/N N
o

K Functions which can call h

47

2. Historic Summary of Scheme

v Lexical (or static) versus dynamical scope
» Lexical or static scope

* The declaration of a non local identifier
depends on the closest lexical context

* The closest nesting rules

48

2. Historic Summary of Scheme

v Lexical (or static) versus dynamical scope
» Lexical or static scope

* The declaration of a non local identifier
depends on the closest lexical context:

You only have to read the program

to determine the declaration of an identifier.

49

2. Historic Summary of Scheme

v Lexical (or static) versus dynamical scope
» Lexical or static scope

* The closest nesting rules:

The scope of a procedure (*) f includes the
procedure f.

If a non local identifier x i1s used In f then the
declaration of x must be found In the closest
procedure g which includes f

Notice (*) : procedure, function or block

50

Example.
Lexical scope
with

“block structure”

Declaration of procedure h
Declaration of variable x (x1)
Declaration of variable y (yl)
Declaration of variable z (zl1)
Declaration of procedure g
Declaration of variable x (x2)
Declaration of variable y (y2)
Declaration of procedure T
Declaration of variable x (x3)

Use of x (=2 Xx3)
Use of y (2 Vy2)
| _Use of z (=2 zl1)

Use of x (=2 Xx2)
Use of y (2 Vy2)
Use of z (2 z1)
Call to T

Use of x (=2 x1)
Use of y (2 vl)
Use of z (2 z1)
Call to g

o1

2. Historic Summary of Scheme
v Lexical (or static) versus dynamical scope
» Lexical or static scope
= Without block structure:

If X Is not local for a specific function then it
IS not local for all functions

52

int x; ;* xi *; -Global varlables
Int y; *yl *
int z; /* z1 */ 'are not

_ - recommended
main()) ======Z0kememmmmmm———---

{
int x; /* x2 */
; inty;, /*y2?%*/
Example in C:
/* Use of x 2 x2 */

- /* Use of y 2> y2 */
WIthOUt /* Use of z > z1 */
e s /* Call to f */

block structure 1OF

)
O
{

Int x; /* x3 */

/* Use of X 2 x3 */

/* Use of y =2 yl */

/* Use of z 2> z1 */

! 53

2. Historic Summary of Scheme
v Lexical (or static) versus dynamical scope
» Dynamical scope:

* The declaration of an identifier depends on the
execution of the program

= The closest activation rules

o4

2. Historic Summary of Scheme
v Lexical (or static) versus dynamical scope
» Dynamical scope:

* The declaration of an identifier depends on the
execution of the program

You have to run the program
to determine the declaration of an identifier

95

. Historic Summary of Scheme
v Lexical (or static) versus dynamical scope
» Dynamical scope:

= The closest activation rules:

The scope of a procedure (*) f includes the
procedure f.

If a non local identifier x is used In the
activation of f then the declaration of x must
be found In the closest active procedure g
with a declaration of x

Notice (*) : procedure, function or block

56

2. Historic Summary of Scheme
v Lexical (or static) versus dynamical scope
» Notice:

= The dynamical scope allows that an identifier
can be associated to different declarations
during the program execution

S7

Example:
Lexical
versus

Dynamical

scope

Program
Declaration of va

Use of x

Declaration of pr

Declaration of p
Use of X
Call to T

Call to T

Call to h

1T condition =
else Use of X

Use of x
Call to T
Call to g

riable x

Declaration of procedure T

ocedure g

Declaration of variable x

rocedure h

true then Call to ¢

58

Program

/\

Activation Stack

/\

Activation Tree

59

Program

/\

Program

Activation Stack

/\

Activation Tree

60

Program

/\

Program

Activation Stack

/\

Activation Tree

61

Program

Program |

Activation Stack Activation Tree

62

Program

Activation Stack

Program

Activation Tree

63

_. Program

Program

Activation Stack

Activation Tree

64

Program

Activation Stack

Program

Activation Tree

65

Program

Activation Stack

Program

Activation Tree

66

_ Program

Program

Activation Stack

Activation Tree

67

Program

Activation Stack

Program

68

_. Program

Program

Activation Stack

69

_. Program

h
Program 4 |
f

Activation Stack Activation Tree

70

Activation Stack

"
N\
Program '~

Activation Tree

71

Program

9

Program

—)
—

9

f

Program

f

Program

Program

—

h

9

4 U

g

Program

f

Program

—

h

9

Program

Changes in the activation Stack (1 / 2)

72

f

h

9

Program

—

h

9

Program

Program

—

g

Program

Changes in the activation Stack (2 / 2)

73

Run with

lexical scope

Program
Declaration of variable x (X;)

Declaration of procedure T
Use of X

Declaration of procedure ¢
Declaration of variable x (X,)

Declaration of procedure h
Use of X
Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g

74

Program Lexical scope

/\

Activation Stack

/\

Activation Tree

75

Run with

lexical scope

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

Declaration of procedure ¢
Declaration of variable x (X2)

Declaration of procedure h
Use of X
Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x1
Call to T
Call to g

76

. Program Lexical scope

“” = Use of x1 of
Program in Program
T / 9 \
T h
Program |
f

Activation Stack Activation Tree

77

Run with

lexical scope

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

Declaration of procedure ¢
Declaration of variable x (X2)

Declaration of procedure h
Use of X
Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g

78

Run with

lexical scope

Program
Declaration of variable x (x1)

Declaration of procedure T

Use of x1 < ——

Declaration of procedure ¢
Declaration of variable x (X2)

Declaration of procedure h
Use of X
Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g

79

Program Lexical scope

» Use of x1 of Program
Inf

Program

Activation Stack Activation Tree

80

Program

Activation Stack

Program

Lexical scope

Activation Tree

81

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

; Declaration of procedure ¢
Run with Declaration of variable x (x2)

lexical SCOpe Declaration of procedure h
Use of X

Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 82

Program

Activation Stack

Program

Lexical scope

Activation Tree

83

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

; Declaration of procedure ¢
Run with Declaration of variable x (x2)

lexical SCOpe Declaration of procedure h
Use of X

Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 84

Program
Declaration of variable x (x1)

Declaration of procedure T

Use of x1 <——1

; Declaration of procedure ¢
Run with Declaration of variable x (x2)

lexical SCOpe Declaration of procedure h
Use of X

Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 85

.- Program Lexical scope

» Use of x1 of Program

Inf
/,’ g\
///

T S h

\\ /

N /
g e |

Program

f

Activation Stack Activation Tree

86

Program

Activation Stack

Program

Lexical scope

Activation Tree

87

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

; Declaration of procedure ¢
Run with Declaration of variable x (x2)

lexical SCOpe Declaration of procedure h
Use of X

Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 88

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

; Declaration of procedure ¢
Run with Declaration of variable x (x2)

lexical SCOpe Declaration of procedure h
Use of x2

Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 89

Program

Activation Stack

Program

Lexical scope

Activation Tree

= Use of x2o0fginh

90

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

; Declaration of procedure ¢
Run with Declaration of variable x (x2)
lexical scope Declaration of procedure h
Use of X
call to f<<j:::::j
Call to T
Call to h
1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] o1

Program
Declaration of variable x (x1)

Declaration of procedure T

Use of x1 <——1

; Declaration of procedure ¢
Run with Declaration of variable x (x2)
lexical scope Declaration of procedure h
Use of X
call to f<<j:::::j
Call to T
Call to h
1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 92

Program

Activation Stack

. Program Lexical scope

» Use of x1 of Program
Inf

Activation Tree ./

93

Program

Activation Stack

Program

Lexical scope

94

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of x2

; Declaration of procedure ¢
Run with Declaration of variable x (x2)
lexical scope Declaration of procedure h
Use of X
Call to T
Call to T
Call to h
1T condition = true then Call to ¢
else Use of x2<——7

Use of x
Call to T
Call to ¢ <iﬁ:::::] 95

_. Program Lexical scope

= Useof x2ofging

Program !

Activation Stack Activation Tree *«_ ./

L

96

Run with

lexical scope

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of x2

Declaration of procedure ¢
Declaration of variable x (X2)

Declaration of procedure h
Use of X
Call to T

Call to T

Call to h

1T condition = true then Call to ¢
else Use of x2

Use of x
Call to T
Call to g

e </

97

_. Program

Program

Activation Stack

Lexical scope

98

AN

Program™~_ Lexical scope

e w mm = =

Activation Stack Activation Tree ~--

99

Program
Declaration of variable x (X;)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (X%,)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g 100

Program Dynamical scope

/\
/\

Activation Stack Activation Tree

101

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x1
Call to T
Call to ¢ 102

Program Dynamical scope

= Use of x1 of
Program in Program

Program |

Activation Stack Activation Tree

103

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ 104

Program
Declaration of variable x (x1)

Declaration of procedure T

Use of x1 < ——

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g 105

Program Dynamical scope

= Use of x1 of
Program in f

Program

Activation Stack Activation Tree

106

Program Dynamical scope

Program |

Activation Stack Activation Tree

107

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g <it:::::j 108

. Program Dynamical scope

Program

Activation Stack Activation Tree

109

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 110

Program
Declaration of variable x (x1)

Declaration of procedure T

Use of x2 < ——1

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <iﬁ:::::] 111

Dynamical scope

_. Program

= Notice: use of x2 of g
Inf

/,’ g\
///

T ' h

.. L y

N /
: |

Program

f

Activation Stack Activation Tree

112

.- Program Dynamical scope

Program |

Activation Stack Activation Tree

113

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of X
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <it::::j 114

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h
Use of x2
Call to T

dynamical

scope
Call to T

Call to h

1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to ¢ <it::::j 115

Program Dynamical scope
= Use of x2ofginh

Program

Activation Stack Activation Tree

116

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

] Declaration of procedure ¢
Run with Declaration of variable x (x2)
- Declaration of procedure h
dynamical oo IS
Call t0'f<:i::::j
scope
Call to T
Call to h
1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g <it::::j 117

Program
Declaration of variable x (x1)

Declaration of procedure T

Use of x2 < ——1

] Declaration of procedure ¢
Run with Declaration of variable x (x2)
- Declaration of procedure h
dynamical oo IS
Call t0'f<:i::::j
scope
Call to T
Call to h
1T condition = true then Call to ¢
else Use of X

Use of x
Call to T
Call to g <it::::j 118

_ Program Dynamical scope

= Notice: use of x2 of
ginf

Program

Activation Stack Activation Tree ../

119

Program Dynamical scope

Program U

Activation Stack Activation Tree ~_, /

120

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

_ Declaration of procedure g
Run with Declaration of variable x (x2)
- Declaration of procedure h
dynamical oo IS
Call to T
Scope
Call to T
Call to h
1T condition = true then Call to ¢
else Use of x2<——7

Use of x
Call to T
Call to g <it:::::j 191

_. Program Dynamical scope
»Useof x2ofging

Program !

Activation Stack Activation Tree *«_ ./

L

122

Program
Declaration of variable x (x1)

Declaration of procedure T
Use of X

i Declaration of procedure ¢
Run with Declaration of variable x (x2)

Declaration of procedure h

dynamical scope oo IS
Call to f

Call to T

Call to h

1T condition = true then Call to ¢
else Use of x2

Use of x
Call to T
Call to ¢ 123

e </

_. Program

Dynamical scope

h
Program |
f

Activation Stack

124

r\ -
Program™~_ Dynamical scope

Activation Stack Activation Tree ~--

125

2. Historic Summary of Scheme
v' LISP
v' Compilation versus Interpretation
v Dynamically versus statically scope

v Origin of Scheme

126

2. Historic Summary of Scheme
v Origin of Scheme:
» Gerald Jay Sussman (MIT) and Guy Lewis Steele Jr.
» Question:

How would LISP be with lexical or static scope
rules?

» Answer: new language = Scheme
= More efficient implementation of recursion
= First class functions.
= Rigorous semantic rules

» Influence on Common LISP: lexical scope rules

» Revised ® Report on the Algorithmic Language
Scheme 127

2. Historic Summary of Scheme
v' Scheme:
» Structure of scheme programs
= Sequence of
definitions of functions and variables

and expressions

128

CORDOBA UNIVERSITY
SUPERIOR POLYTECHNIC SCHOOL

DEPARTMENT OF
COMPUTER SCIENCE AND NUMERICAL ANALYSIS

DECLARATIVE PROGRAMMING

COMPUTER ENGINEERING
COMPUTATION ESPECIALITY

FOURTH YEAR
‘ ..w. A NI FIRST FOUR-MONTH PERIOD

|

F\NIN
DFTO, DE INFORMATICA
Y AMALISIS NUMERICO

Subject 1.- Introduction to Scheme language

