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1. Fundamental Characteristics of Functional Programming

 Functional Programming is a subtype of Declarative
Programming 
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1. Fundamental Characteristics of Functional Programming

 Declarative Programming (1 / 2)

 Objective: Problem description

“What” problem must be resolved?
 Notice:

- It does not mind “how” the problem is 
resolved

- It avoids the implementation features.
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1. Fundamental Characteristics of Functional Programming

 Declarative Programming (2 / 2)

 Features

 Expressivity

 Extensible: 10% - 90% rule

 Protection 

 Mathematic Elegance

 Types: 

 Functional or Applicative Programming: 

- Lisp, Scheme, Haskell, …

 Logic Programming: Prolog
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1. Fundamental Characteristics of Functional Programming 

 Principle of the “Pure” Functional Programming

“The expression value only depends on its sub-
expressions values, if such sub-expressions exist ”.

 Non collateral effects

The value of  “a + b” only depends on “a” and “b”.

 The function term is used in its mathematical sense. 

 No instructions: programming without assignments

 The impure Functional programming allows the 

“assignment instruction”
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1. Fundamental Characteristics of Functional Programming

 Program structure in Functional Programming

 The program is a function composed of simpler 
functions

 Function execution:

 Receives the input data: functions arguments 
or parameters

 Evaluates the expressions

 Returns the Result: computed value of the 
function
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1. Fundamental Characteristics of Functional Programming

 Type of Functional Languages

 Most of them are interpreted languages

 Some of them have compiled versions

 Memory management

 Implicit memory management:

 Memory management is a task of the interpreter.

 The programmer must not worry about memory 
management.

 Garbage collection: task of the interpreter.

In short: the programmer must only worry about the 
Problem description
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2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Lexical (or static) versus dynamical scope

 Origin of Scheme
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2. Historic Summary of Scheme

 LISP

 John McCarthy (MIT)

 “Advice Taker” program: 

 Theoretical basis: Logic Mathematics

 Objective: Deduction and Inferences

 LISP: LISt Processing (1956 – 1958)

 Second historic language of Artificial Intelligence
(after IPL)

 At present time, second historic language in use
(after Fortran)

 LISP is based on Lambda Calculus (Alonzo Church)

 Scheme is a dialect of LISP
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2. Historic Summary of Scheme

 LISP

 Functional Programming Characteristics 

 Recursion

 Lists

 Implicit memory management

 Interactive and interpreted programs 

 Symbolic Programming

 Dynamically scoped for non local variables
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2. Historic Summary of Scheme

 LISP

 LISP’s contributions: 

 Built – in functions

 Garbage collection

 Definition Formal Language: LISP itself
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2. Historic Summary of Scheme

 LISP

 Applications: Artificial Intelligence Programs

 Theorem verification and testing

 Symbolic differentiation and integration

 Search Problems

 Natural Language Processing 

 Computer Vision

 Robotics

 Knowledge Representation Systems

 Expert Systems

 And so on
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2. Historic Summary of Scheme

 LISP

 Dialects (1 /2)

 Mac LISP (Man and computer or Machine – aided 
cognition): East Coast Version

 Inter LISP (Interactive LISP): West Coast Version

- Bolt, Beranek y Newman Company (BBN) 

- Research Center of Xerox at Palo Alto (Texas)

- LISP Machine
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2. Historic Summary of Scheme

 LISP
 Dialects (2 / 2) 

 Mac LISP (Man and computer or Machine – aided 
cognition): East Coast Version

- C-LISP: Massachusetts University

- Franz LISP: California University (Berkeley). 
Compiled version.

- NIL (New implementation of LISP): MIT.

- PSL (Portable Standard LISP): Utah University

- Scheme: MIT.

- T (True):Yale University.

- Common LISP
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2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Lexical (or static) versus dynamical scope

 Origin of Scheme
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2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation: 

 The  source code (high level) is transformed
into executable code (low level), which can be 
independently run.
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2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation

Source codeSource code  CompilerCompiler
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Compilation Compilation 
errorserrors



Source codeSource code  CompilerCompiler

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation
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Source codeSource code  CompilerCompiler  Executable Executable 
codecode

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation
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Source codeSource code  CompilerCompiler  Executable Executable 
codecode



Input dataInput data

2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation
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Execution Execution 
errorserrors

Source codeSource code  CompilerCompiler  Executable Executable 
codecode



Input dataInput data

OutputOutput



2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation
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Source codeSource code  CompilerCompiler  Executable Executable 
codecode



Input dataInput data

OutputOutput



2. Historic Summary of Scheme

 Compilation versus interpretation

 Compilation
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2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation
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2. Historic Summary of Scheme

 Compilation versus interpretation 

 Interpretation or simulation: consists of a cycle  of 
three stages 
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2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation or simulation: consists of a cycle  of 
three stages

1. Analysis: the source code is analysed to 
determine the following correct sentence to 
be run.
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2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation or simulation: consists of a cycle  of 
three stages

1. Analysis: the source code is analysed to 
determine the following correct sentence to 
be run.

2. Generation: the sentence is transformed 
into executable code.
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2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation or simulation: consists of a cycle  of 
three stages

1. Analysis: the source code is analysed to 
determine the following correct sentence to 
be run.

2. Generation: the sentence is transformed 
into executable code.

3. Execution: the executable code  is run.
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Source codeSource code  InterpreterInterpreter

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation
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Source codeSource code  InterpreterInterpreter



Input dataInput data Interpretation Interpretation 
errorserrors

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation
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Source codeSource code  InterpreterInterpreter

OutputOutput




Input dataInput data

Execution Execution 
errorserrors

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation
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Source codeSource code  InterpreterInterpreter

OutputOutput




Input dataInput data

2. Historic Summary of Scheme

 Compilation versus interpretation

 Interpretation



38

 Compilation

- Independent

- Memory necessities

- Efficient

- Global

- No interaction

- Closed code during 
execution

 Interpretation

- Dependent

- No memory 
necessities

- Less efficient

- Local

- Interaction

- Open code during 
execution

2. Historic Summary of Scheme

 Compilation versus interpretation
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2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Lexical (or static) versus dynamical scope

 Origin of Scheme
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 The scope rules determine the declaration of non

local identifiers 

 Non local identifiers:

 Variables or functions which can be used in a 
function or procedure but are not declared in 
that function or procedure

 Two types
 Lexical or static scope

- With “blocks structure”: Pascal, Scheme
- Without “blocks structure”: C, Fortran

 Dynamical scope:
- Always with “blocks structure”: Lisp, 

SNOBOL, APL
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2. Historic Summary of Scheme
 Lexical (or static) versus dynamical scope
 Block structure
 A procedure or function can call

- Itself
- Its children (but not its grandchildren…)
- Its brothers (but not its nephews)
- Its father, grandfather, great-grandfather, …
- The brothers of its father, grandfather, …

 A procedure or function can be called by 
- Itself
- Its father (but not by its grandfather, …)
- Its children, grandchildren, great-

grandchildren, …
- Its brothers and their children, grandchildren, 

...
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P

Declaration of procedure f

Declaration of procedure g

Declaration of procedure h

Declaration of procedure k

Declaration of procedure l

Declaration of procedure m

Declaration of procedure n

Example of 
blocks structure
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P

f l

m n
g h

k Hierarchical blocks structure
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f l

m n
g h

k Functions which can be called by f

P
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f l

m n
g h

k Functions which can call f

P
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f l

m n
g h

k Functions which can be called by h

P
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f l

m n
g h

k Functions which can call h

P
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope

 The declaration of a non local identifier 
depends on the  closest lexical context

 The closest nesting rules
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope

 The declaration of a non local identifier 
depends on the  closest lexical context: 

You only have to read the program 

to determine the declaration of an identifier.
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope

 The closest nesting rules:
- The scope of a procedure (*) f includes the 

procedure f.
- If a non local identifier x is used in f then the 

declaration of x must be found in the closest
procedure  g which includes f

- Notice (*) : procedure, function or block
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Example. 

Lexical scope 

with

“block structure”

Declaration of procedure h
Declaration of variable x  (x1)
Declaration of variable y  (y1)
Declaration of variable z  (z1)

Declaration of procedure g
Declaration of variable x (x2) 
Declaration of variable y (y2)

Declaration of procedure f
Declaration of variable x (x3)

Use of x  ( x3)
Use of y  ( y2)
Use of z  ( z1)

Use of x  ( x2)
Use of y  ( y2)
Use of z  ( z1)
Call to f

Use of x  ( x1)
Use of y  ( y1)
Use of z  ( z1)
Call to g
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope
 Lexical or static scope
 Without block structure:

- If x is not local for a specific function then it
is not local for all functions
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int x;  /* x1 */
int y;  /* y1 */
int z;  /* z1 */

main()
{ 

int x;  /* x2 */
int y;  /* y2 */

/* Use of x  x2 */
/* Use of y  y2 */
/* Use of z  z1 */
/* Call to f */
f ();

}

f()
{
int x;  /* x3 */
/* Use of x  x3 */
/* Use of y  y1 */
/* Use of z  z1 */
}

Example in C:

without

“block structure”

Global variables
are not 
recommended
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Dynamical scope:

 The declaration of an identifier depends on the 
execution of the program

 The closest activation rules
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Dynamical scope:

 The declaration of an identifier depends on the 
execution of the program

You have to run the program 
to determine the declaration of an identifier
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Dynamical scope:

 The closest activation rules:

- The scope of a procedure (*) f includes the 
procedure f.

- If a non local identifier x is used in the 
activation of f then the declaration of x must 
be found in the closest active procedure  g
with a declaration of x

- Notice (*) : procedure, function or block
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2. Historic Summary of Scheme

 Lexical (or static) versus dynamical scope

 Notice: 

 The dynamical scope allows that an identifier
can be associated to different declarations
during the program execution
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Program
Declaration of variable x

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Example:

Lexical

versus 

Dynamical

scope
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Program

f g

f

f

h

Activation Stack Activation Tree
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Program

f g

f

f

h

Program

Activation Stack Activation Tree
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Program

f g

f

f

h

Program

f

Activation Stack Activation Tree
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Program

f g
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Activation Stack Activation Tree
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Program

f g

f

f
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Program
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Activation Stack Activation Tree
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Program

f g

f

f

h

Program
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Activation Stack Activation Tree
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Program

f g
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f

h

Program

g

Activation Stack Activation Tree
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Program

f g

f

f

h

Program

g

h

Activation Stack Activation Tree
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Program

f g

f

f

h

Program

g

h

f

Activation Stack Activation Tree
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Program

f g

f

f

h

Program

g

h

Activation Stack Activation Tree



69

Program

f g

f

f

h

Program

g

Activation Stack Activation Tree
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Program

f g

f

f

h

Program

Activation Stack Activation Tree
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Program

f g

f

f

h

Activation Stack Activation Tree
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f

Program

Program
g

Program g

Program

f

g

Program
g

Program

h

Changes in the activation Stack (1 / 2)

Program

f

g

Program

h
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f

g

Program

h

g

Program

h
g

Program

Program

Changes in the activation Stack (2 / 2)
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope



75

Program

f g

f

f

h

Lexical scope

Activation Stack Activation Tree
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x1
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

Lexical scope

 Use of x1 of 
Program in Program

Activation Stack Activation Tree
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

f

Lexical scope
 Use of x1 of Program
in f

Activation Stack Activation Tree
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Program

f g

f

f

h

Program

Activation Stack Activation Tree

Lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

g

f

Activation Stack Activation Tree

Lexical scope
 Use of x1 of Program
in f
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Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x2
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

g

h

Lexical scope

 Use of x2 of g in h

Activation Stack Activation Tree
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

g

h

f

Activation Stack Activation Tree

Lexical scope
 Use of x1 of Program
in f



94

Program

f g

f

f

h

Program

g

h

Activation Stack Activation Tree

Lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x2

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x2

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

g

Activation Stack Activation Tree

Lexical scope

 Use of x2 of g in g
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x2

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x2

Use of x
Call to f
Call to g

Run with 

lexical scope
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Program

f g

f

f

h

Program

Activation Stack Activation Tree

Lexical scope
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Program

f g

f

f

h

Activation Stack Activation Tree

Lexical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope
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Program

f g

f

f

h

Dynamical scope

Activation Stack Activation Tree
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x1
Call to f
Call to g

Run with 

dynamical

scope
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Program

f g

f

f

h

Program

Dynamical scope

 Use of x1 of 
Program in Program

Activation Stack Activation Tree
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x1

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope
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Program

f g

f

f

h

Program

f

Activation Stack Activation Tree

Dynamical scope

 Use of x1 of 
Program in f
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Program

f g

f

f

h

Program

Activation Stack Activation Tree

Dynamical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope
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Program

f g

f

f

h

Program
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Activation Stack Activation Tree

Dynamical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x2

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
Call to f

Call to f
Call to h
if condition = true then Call to g
else Use of x

Use of x
Call to f
Call to g

Run with 

dynamical

scope
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Program

f g

f

f

h

Program

g

f

Dynamical scope

 Notice: use of x2 of g
in f

Activation Stack Activation Tree
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Program

f g

f

f
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Program

g

Activation Stack Activation Tree

Dynamical scope
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Program
Declaration of variable x (x1)

Declaration of procedure f
Use of x

Declaration of procedure g
Declaration of variable x  (x2)

Declaration of procedure h
Use of x
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2. Historic Summary of Scheme

 LISP

 Compilation versus Interpretation

 Dynamically versus statically scope

 Origin of Scheme
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2. Historic Summary of Scheme

 Origin of Scheme:

 Gerald Jay Sussman (MIT) and Guy Lewis Steele Jr. 

 Question: 

How would LISP be with lexical or static scope
rules?

 Answer: new language  Scheme

 More efficient implementation of recursion

 First class functions.

 Rigorous semantic rules

 Influence on Common LISP: lexical scope rules

 Revised 5 Report on the Algorithmic Language 
Scheme
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2. Historic Summary of Scheme

 Scheme:

 Structure of scheme programs

 Sequence of 

- definitions of functions and variables

- and expressions
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