Diversificación avanzada de máquinas de aprendizaje (Red DAMA)

Accesos: 4689
Estado:
No iniciado
Líderes del proyecto:
Colaboradores:
  • Aníbal Ramón Figueiras Vidal
  • Sancho Salcedo-Sanz
  • Alberto Suárez González
  • Miquel Sánchez Marré
  • Manuel Mucientes Molina
Inicio propuesto:
2016-01-01
Límite propuesto:
2017-01-01

Descripción:

Organismo: Ministerio de Economía y Competitividad. MINECO

Periodo: 2016-2017

 

Resumen español:

La Red Temática DAMA, constituida por 6 grupos de investigación con demostrable cooperación anterior, se orienta científico-­técnicamente a introducir nuevos métodos de diversificación, mejora de los conocidos, combinaciones de ellos, empleo de nuevos aprendices (incluyendo las muy celebradas Redes Profundas), extensiones a problemas de Aprendizaje Máquina de particular relevancia (desequilibrados, ordinales, semi y no supervisados, etc.), aprovechamiento en tareas secundarias (como imputación, selección de rasgos y ponderación de errores muestrales), llegando a las aplicaciones, preferentemente en los ámbitos de Finanzas, Energía, Márketing Inteligente e Industria Química, Farmacéutica y Biotecnológica, con el apoyo de media docena de empresas especializadas.

 

Resumen inglés:

Six research groups that have (documented) previous cooperation experience, would compose the DAMA Net. The scientific and technical contribution of that net is towards diversity in Machine Learning, looking for new techniques and improving those already available, plus introducing new learners (event the much celebrated Deep Networks). Extensions of the results to particular relevant Machine Learning Problems imbalanced, ordinal, semi- and non-supervised, etc.- and taking advantage of them to address secondary tasks (such as imputation of missing values, feature selection, and sample error weighting). With respect to practical applications, we will focus on Finance, Energy, Intelligent Marketing, and Chemical, Pharmacological and Biotechnological Industry problems. Six companies with recognized presence in these areas will help us in these directions.

The research activity will be carried out by constituting inter-group teams that will concentrate in specific issues. Annual Days of DAMA Net will be celebrated and will include coordination, educational, research, technology transfer, and diffusion components. International visibility will be obtained with scientific results, EU project proposals, and international cooperation (mainly via similar nets, such as the USA-LatAm-Spain Data Science and Engineering Consortium, which already includes two of our Universities).